Lecture two:

A Coinductive Calculus of Streams

Jan Rutten

CWI Amsterdam \& Radboud University Nijmegen
IPM, Tehran - 13 January 2016

Overview of this talk

1. Stream differential equations (SDEs)
2. Solving systems of SDEs
3. Formats for SDEs
4. Streams and coinduction
5. Discussion
6. Stream differential equations

Streams are the canonical example of a (final) coalgebra.
Stream differential equations:
General framework for defining streams.
Hand in hand with coinduction as main proof method.
Ultimately leading to efficient algorithmics and automated proofs.

1. Stream differential equations

Streams are the canonical example of a (final) coalgebra.
Stream differential equations:

- General framework for defining streams.
- Hand in hand with coinduction as main proof method.
- Ultimately leading to efficient algorithmics and automated proofs.

Stream Differential Equations (SDEs)

We shall explain how the following diagram

represents a system of stream differential equations and its solution.

A stream system/coalgebra

For $x \in X$, one often writes
(out $(x)=n$ and $\operatorname{tr}(x)=y) \equiv x \xrightarrow{n} y$
(dynamical/transition system)

Stream Differential Equations

Another way of writing:
$(\operatorname{out}(x)=n$ and $\operatorname{tr}(x)=y) \equiv\left(x(0)=n \quad\right.$ and $\left.\quad x^{\prime}=y\right)$
initial value and derivative!

Stream Differential Equations

So we view any stream coalgebra

as a system of stream differential equations (SDEs):

$$
\left\{x(0)=\operatorname{out}(x) \text { and } x^{\prime}=\operatorname{tr}(x)\right\}_{x \in X}
$$

We think of X as the set of variables.

Stream Differential Equations

So we view any stream coalgebra

as a system of stream differential equations (SDEs):

$$
\left\{x(0)=\operatorname{out}(x) \text { and } x^{\prime}=\operatorname{tr}(x)\right\}_{x \in X}
$$

We think of X as the set of variables.

Streams

\mathbb{N}^{ω}
〈head, tail〉
$\mathbb{N} \times \mathbb{N}^{\omega}$

$\operatorname{head}\left(n_{0}, n_{1}, n_{2}, \ldots\right)=n_{0}$
$\operatorname{tail}\left(n_{0}, n_{1}, n_{2}, \ldots\right)=\left(n_{1}, n_{2}, \ldots\right)$

Stream Differential Equations

\mathbb{N}^{ω}
〈head, tail〉
$\mathbb{N} \times \mathbb{N}^{\omega}$

Also here we shall write
$\left(n_{0}, n_{1}, n_{2}, \ldots\right)(0)=n_{0}$
$\left(n_{0}, n_{1}, n_{2}, \ldots\right)^{\prime}=\left(n_{1}, n_{2}, n_{3}, \ldots\right)$

Finality of streams

The function f, defined by

$$
f(x)=(\operatorname{out}(x), \text { out }(\operatorname{tr}(x)), \text { out }(\operatorname{tr}(\operatorname{tr}(x))), \ldots)
$$

is the unique function making the diagram commute.

Solutions by finality

System of SDEs:

$$
\left\{x(0)=\operatorname{out}(x) \text { and } x^{\prime}=\operatorname{tr}(x)\right\}_{x \in X}
$$

The (unique) solution is given by the collection of streams:

These streams are a solution of the SDEs, since

$$
f(x)(0)=\operatorname{out}(x) \text { and } f^{\prime}(x)^{\prime}=\operatorname{tr}(x)
$$

Solutions by finality

System of SDEs:

$$
\left\{x(0)=\operatorname{out}(x) \text { and } x^{\prime}=\operatorname{tr}(x)\right\}_{x \in X}
$$

The (unique) solution is given by the collection of streams:

$$
\{f(x)\}_{x \in X}
$$

These streams are a solution of the SDEs, since

$$
f(x)(0)=\operatorname{out}(x) \text { and } f(x)^{\prime}=\operatorname{tr}(x)
$$

Solutions by finality

System of SDEs:

$$
\left\{x(0)=\operatorname{out}(x) \text { and } x^{\prime}=\operatorname{tr}(x)\right\}_{x \in X}
$$

The (unique) solution is given by the collection of streams:

$$
\{f(x)\}_{x \in X}
$$

These streams are a solution of the SDEs, since

$$
f(x)(0)=\operatorname{out}(x) \text { and } f(x)^{\prime}=\operatorname{tr}(x)
$$

Stream calculus is easy ．．．

since any system of SDEs

$$
\text { 〈out, tr }\rangle \quad\left\{x(0)=\operatorname{out}(x) \text { and } x^{\prime}=\operatorname{tr}(x)\right\}_{x \in X}
$$

has a（unique solution）

$$
\{f(x)\}_{x \in X}
$$

given by finality：

Stream calculus is easy ...

... since any system of SDEs

has a (unique solution)
given by finality:

Stream calculus is easy ...

... since any system of SDEs

has a (unique solution)

$$
\{f(x)\}_{x \in X}
$$

given by finality:

Example

SDEs: $x(0)=0, x^{\prime}=y \quad$ and $\quad y(0)=1, y^{\prime}=x$
Solution: $f(x)=(0,1,0,1, \ldots), \quad f(y)=(1,0,1,0, \ldots)$

Example: infinite system of SDEs

SDEs:

$$
(\sigma, \tau)(0)=\sigma(0)+\tau(0), \quad(\sigma, \tau)^{\prime}=\left(\sigma^{\prime}, \tau^{\prime}\right) \quad\left(\forall \sigma, \tau \in \mathbb{N}^{\omega}\right)
$$

Solution:

$$
f(\sigma, \tau)=(\sigma(0)+\tau(0), \sigma(1)+\tau(1), \ldots)
$$

Example: infinite system of SDEs

SDEs:

$$
(\sigma+\tau)(0)=\sigma(0)+\tau(0), \quad(\sigma+\tau)^{\prime}=\sigma^{\prime}+\tau^{\prime} \quad\left(\forall \sigma, \tau \in \mathbb{N}^{\omega}\right)
$$

Solution:

$$
\sigma+\tau=(\sigma(0)+\tau(0), \sigma(1)+\tau(1), \ldots)
$$

Example: infinite system of SDEs

SDEs:

$$
(\sigma+\tau)(0)=\sigma(0)+\tau(0), \quad(\sigma+\tau)^{\prime}=\sigma^{\prime}+\tau^{\prime} \quad\left(\forall \sigma, \tau \in \mathbb{N}^{\omega}\right)
$$

Solution:
This formula is not really relevant. SDE says it all.

Example: in the end . . .

... we simply will say: Let the function

$$
+: \mathbb{N}^{\omega} \times \mathbb{N}^{\omega} \rightarrow \mathbb{N}^{\omega}
$$

be given by the following system of SDEs:

$$
(\sigma+\tau)(0)=\sigma(0)+\tau(0), \quad(\sigma+\tau)^{\prime}=\sigma^{\prime}+\tau^{\prime} \quad\left(\forall \sigma, \tau \in \mathbb{N}^{\omega}\right)
$$

Example: shuffle product

Let the function

$$
\otimes: \mathbb{N}^{\omega} \times \mathbb{N}^{\omega} \rightarrow \mathbb{N}^{\omega}
$$

be given by the following system of SDEs:

$$
(\sigma \otimes \tau)(0)=\sigma(0) \tau(0), \quad(\sigma \otimes \tau)^{\prime}=\left(\sigma^{\prime} \otimes \tau\right)+\left(\sigma \otimes \tau^{\prime}\right)
$$

Solution: $\quad(\sigma \otimes \tau)(n)=\sum_{k=0}^{n}\binom{n}{k} \cdot \sigma(k) \cdot \tau(n-k)$

Example: shuffle product

Let the function

$$
\otimes: \mathbb{N}^{\omega} \times \mathbb{N}^{\omega} \rightarrow \mathbb{N}^{\omega}
$$

be given by the following system of SDEs:

$$
(\sigma \otimes \tau)(0)=\sigma(0) \tau(0), \quad(\sigma \otimes \tau)^{\prime}=\left(\sigma^{\prime} \otimes \tau\right)+\left(\sigma \otimes \tau^{\prime}\right)
$$

Again: this formula is not important. SDE says it all.

Proofs by coinduction

$R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ is a stream bisimulation if

$$
\forall(\sigma, \tau) \in R: \quad \text { (i) } \sigma(0)=\tau(0) \text { and } \quad \text { (ii) }\left(\sigma^{\prime}, \tau^{\prime}\right) \in R
$$

Theorem [Coinduction proof principle]:

$$
(\sigma, \tau) \in R \Rightarrow \sigma=\tau
$$

Proof: exercise.

Proofs by coinduction

$R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ is a stream bisimulation if

$$
\forall(\sigma, \tau) \in R: \quad \text { (i) } \sigma(0)=\tau(0) \text { and } \quad \text { (ii) }\left(\sigma^{\prime}, \tau^{\prime}\right) \in R
$$

Theorem [Coinduction proof principle]:

$$
(\sigma, \tau) \in R \Rightarrow \sigma=\tau
$$

Proof: exercise.

Coinduction: example

For all $\sigma, \tau, \rho \in \mathbb{N}^{\omega}$:

$$
(\sigma \otimes \tau) \otimes \rho=\sigma \otimes(\tau \otimes \rho)
$$

Proof:

$$
R=\left\{((\sigma \otimes \tau) \otimes \rho, \sigma \otimes(\tau \otimes \rho)) \mid \sigma, \tau, \rho \in \mathbb{N}^{\omega}\right\}
$$

is a stream bisimulation relation up-to + .

Coinduction: example

For all $\sigma, \tau, \rho \in \mathbb{N}^{\omega}$:

$$
(\sigma \otimes \tau) \otimes \rho=\sigma \otimes(\tau \otimes \rho)
$$

Proof:

$$
R=\left\{((\sigma \otimes \tau) \otimes \rho, \sigma \otimes(\tau \otimes \rho)) \mid \sigma, \tau, \rho \in \mathbb{N}^{\omega}\right\}
$$

is a stream bisimulation relation up-to + , since

$$
\begin{aligned}
& ((\sigma \otimes \tau) \otimes \rho)^{\prime}=\left(\sigma^{\prime} \otimes \tau\right) \otimes \rho+\left(\sigma \otimes \tau^{\prime}\right) \otimes \rho+(\sigma \otimes \tau) \otimes \rho^{\prime} \\
& (\sigma \otimes(\tau \otimes \rho))^{\prime}=\sigma^{\prime} \otimes(\tau \otimes \rho)+\sigma \otimes\left(\tau^{\prime} \otimes \rho\right)+\sigma \otimes\left(\tau \otimes \rho^{\prime}\right)
\end{aligned}
$$

Coinduction: example

For all $\sigma, \tau, \rho \in \mathbb{N}^{\omega}$:

$$
(\sigma \otimes \tau) \otimes \rho=\sigma \otimes(\tau \otimes \rho)
$$

Exercise: try and give a proof using the formula

$$
(\sigma \otimes \tau)(n)=\sum_{k=0}^{n}\binom{n}{k} \cdot \sigma(k) \cdot \tau(n-k)
$$

Coinduction-up-to

Cf. Milner, Sangiorgi
Coinduction-up-to really is: Algebra + Coalgebra
Cf. Coalgebraic bisimulation-up-to
J. Rot, M. Bonsangue, and J. Rutten

LNCS 7741, 2013
Cf. Hacking nondeterminism with induction and coinduction Filippo Bonchi and Damien Pous
Commun. ACM Vol. 58(2), 2015
More in Lecture four.

Coinduction-up-to

Cf. Milner, Sangiorgi
Coinduction-up-to really is: Algebra + Coalgebra
Cf. Coalgebraic bisimulation-up-to
J. Rot, M. Bonsangue, and J. Rutten

LNCS 7741, 2013
Cf. Hacking nondeterminism with induction and coinduction Filippo Bonchi and Damien Pous
Commun. ACM Vol. 58(2), 2015
More in Lecture four.

2. Solving systems of SDEs

Previous definition of SDEs: semantical.
Next: syntax.
Given: a syntactically presented system of SDEs.
Goal: find its solution.
Answer: use the syntactic method to construct a suitable stream coalgebra.

Use finality (as before) to get the solution.

2. Solving systems of SDEs

Previous definition of SDEs: semantical.
Next: syntax.

Given: a syntactically presented system of SDEs.
Goal: find its solution.
Answer: use the syntactic method to construct a suitable stream coalgebra.

Use finality (as before) to get the solution.

2. Solving systems of SDEs

Previous definition of SDEs: semantical.
Next: syntax.

- Given: a syntactically presented system of SDEs.
- Goal: find its solution.
- Answer: use the syntactic method to construct a suitable stream coalgebra.
- Use finality (as before) to get the solution.

Examples

The SDE:

$$
\sigma^{\prime}=\sigma \quad \sigma(0)=1
$$

defines

$$
\sigma=(1,1,1, \ldots)
$$

The SDE:

Examples

The SDE:

$$
\sigma^{\prime}=\sigma \quad \sigma(0)=1
$$

defines

$$
\sigma=(1,1,1, \ldots)
$$

The SDE:

$$
\sigma^{\prime \prime}=\sigma^{\prime}+\sigma \quad \sigma(0)=1 \quad \sigma^{\prime}(0)=1
$$

defines the Fibonacci numbers:

Examples

The SDE:

$$
\sigma^{\prime}=\sigma \quad \sigma(0)=1
$$

defines

$$
\sigma=(1,1,1, \ldots)
$$

The SDE:

$$
\sigma^{\prime \prime}=\sigma^{\prime}+\sigma \quad \sigma(0)=1 \quad \sigma^{\prime}(0)=1
$$

defines the Fibonacci numbers:

$$
\sigma=(1,1,2,3,5,8, \ldots)
$$

Examples

The SDE:

$$
(\sigma+\tau)^{\prime}=\sigma^{\prime}+\tau^{\prime} \quad(\sigma+\tau)(0)=\sigma(0)+\tau(0)
$$

defines pointwise sum:

$$
(\sigma+\tau)(n)=\sigma(n)+\tau(n)
$$

The SDE:

$(\sigma \times \tau)^{\prime}=\left(\sigma^{\prime} \times \tau\right)+\left([\sigma(0)] \times \tau^{\prime}\right) \quad(\sigma \times \tau)(0)=\sigma(0) \cdot \tau(0)$
(where $[\sigma(0)]=(\sigma(0), 0,0,0, \ldots))$ defines convolution product:

Examples

The SDE:

$$
(\sigma+\tau)^{\prime}=\sigma^{\prime}+\tau^{\prime} \quad(\sigma+\tau)(0)=\sigma(0)+\tau(0)
$$

defines pointwise sum:

$$
(\sigma+\tau)(n)=\sigma(n)+\tau(n)
$$

The SDE:
(where $[\sigma(0)]=(\sigma(0), 0,0,0, \ldots))$ defines convolution product:

Examples

The SDE:

$$
(\sigma+\tau)^{\prime}=\sigma^{\prime}+\tau^{\prime} \quad(\sigma+\tau)(0)=\sigma(0)+\tau(0)
$$

defines pointwise sum:

$$
(\sigma+\tau)(n)=\sigma(n)+\tau(n)
$$

The SDE:
$(\sigma \times \tau)^{\prime}=\left(\sigma^{\prime} \times \tau\right)+\left([\sigma(0)] \times \tau^{\prime}\right) \quad(\sigma \times \tau)(0)=\sigma(0) \cdot \tau(0)$
(where $[\sigma(0)]=(\sigma(0), 0,0,0, \ldots))$ defines convolution product:

Examples

The SDE:

$$
(\sigma+\tau)^{\prime}=\sigma^{\prime}+\tau^{\prime} \quad(\sigma+\tau)(0)=\sigma(0)+\tau(0)
$$

defines pointwise sum:

$$
(\sigma+\tau)(n)=\sigma(n)+\tau(n)
$$

The SDE:
$(\sigma \times \tau)^{\prime}=\left(\sigma^{\prime} \times \tau\right)+\left([\sigma(0)] \times \tau^{\prime}\right) \quad(\sigma \times \tau)(0)=\sigma(0) \cdot \tau(0)$
(where $[\sigma(0)]=(\sigma(0), 0,0,0, \ldots))$ defines convolution product:

$$
(\sigma \times \tau)(n)=\sum_{k=0}^{n} \sigma(k) \cdot \tau(n-k)
$$

The syntactic method

A general method for solving systems of SDEs.
It works for a fairly large class of systems of SDEs.
We explain it by means of an example: the Hamming numbers.

The syntactic method

A general method for solving systems of SDEs.
It works for a fairly large class of systems of SDEs.
We explain it by means of an example: the Hamming numbers.

The Hamming numbers

Cf. Dijkstra's [EDW792].
All natural numbers, in increasing order, that have no other prime factors than 2 and 3 (and 5):

$$
\begin{aligned}
\gamma & =\left(2^{0} 3^{0}, 2^{1} 3^{0}, 2^{0} 3^{1}, 2^{2} 3^{0}, 2^{1} 3^{1}, 2^{3} 3^{0}, 2^{0} 3^{2}, 2^{2} 3^{1}, \ldots\right) \\
& =(1,2,3,4,6,8,9,12, \ldots)
\end{aligned}
$$

We define γ by the stream differential equation

The Hamming numbers

Cf. Dijkstra's [EDW792].

All natural numbers, in increasing order, that have no other prime factors than 2 and 3 (and 5):

$$
\begin{aligned}
\gamma & =\left(2^{0} 3^{0}, 2^{1} 3^{0}, 2^{0} 3^{1}, 2^{2} 3^{0}, 2^{1} 3^{1}, 2^{3} 3^{0}, 2^{0} 3^{2}, 2^{2} 3^{1}, \ldots\right) \\
& =(1,2,3,4,6,8,9,12, \ldots)
\end{aligned}
$$

We define γ by the stream differential equation

$$
\gamma^{\prime}=(2 \times \gamma) \|(3 \times \gamma) \quad \gamma(0)=1
$$

Note: this is not classical mathematics.

The stream differential equation

$$
\gamma^{\prime}=(2 \times \gamma) \|(3 \times \gamma) \quad \gamma(0)=1
$$

Here the ordered merge $\|: \mathbb{N}^{\omega} \times \mathbb{N}^{\omega} \rightarrow \mathbb{N}^{\omega}$ is defined by

$$
\begin{aligned}
& (\sigma \| \tau)^{\prime}= \begin{cases}\sigma^{\prime} \| \tau & \text { if } \sigma(0)<\tau(0) \\
\sigma^{\prime} \| \tau^{\prime} & \text { if } \sigma(0)=\tau(0) \\
\sigma \| \tau^{\prime} & \text { if } \sigma(0)>\tau(0)\end{cases} \\
& (\sigma \| \tau)(0)= \begin{cases}\sigma(0) & \text { if } \sigma(0)<\tau(0) \\
\tau(0) & \text { if } \sigma(0) \geq \tau(0)\end{cases}
\end{aligned}
$$

and $2 \times \sigma$ (and similarly $3 \times \sigma$) is defined by

$$
(2 \times \sigma)^{\prime}=2 \times\left(\sigma^{\prime}\right) \quad(2 \times \sigma)(0)=2 \cdot \sigma(0)
$$

Syntactic solution method

Goal: to prove the unique existence of a solution for

$$
\gamma^{\prime}=(2 \times \gamma) \|(3 \times \gamma) \quad \gamma(0)=1
$$

Assuming the solution exists, we compute the first few derivatives of γ :

The idea: define syntactic terms for all possible such righthand sides.

Syntactic solution method

Goal: to prove the unique existence of a solution for

$$
\gamma^{\prime}=(2 \times \gamma) \|(3 \times \gamma) \quad \gamma(0)=1
$$

Assuming the solution exists, we compute the first few derivatives of γ :
$\gamma^{(1)}=(2 \times \gamma) \|(3 \times \gamma)$
$\gamma^{(2)}=(2 \times((2 \times \gamma) \|(3 \times \gamma))) \|(3 \times \gamma)$
$\gamma^{(3)}=(2 \times((2 \times \gamma) \|(3 \times \gamma))) \|(3 \times((2 \times \gamma) \|(3 \times \gamma)))$

The idea: define syntactic terms for all possible such righthand sides.

Syntactic solution method

Goal: to prove the unique existence of a solution for

$$
\gamma^{\prime}=(2 \times \gamma) \|(3 \times \gamma) \quad \gamma(0)=1
$$

Assuming the solution exists, we compute the first few derivatives of γ :

$$
\begin{aligned}
& \gamma^{(1)}=(2 \times \gamma) \|(3 \times \gamma) \\
& \gamma^{(2)}=(2 \times((2 \times \gamma) \|(3 \times \gamma))) \|(3 \times \gamma) \\
& \gamma^{(3)}=(2 \times((2 \times \gamma) \|(3 \times \gamma))) \|(3 \times((2 \times \gamma) \|(3 \times \gamma)))
\end{aligned}
$$

The idea: define syntactic terms for all possible such righthand sides.

The term coalgebra

Term $\ni t::=\mathbf{c}\left|\underline{\sigma}\left(\sigma \in \mathbb{N}^{\omega}\right)\right| 2 \operatorname{times}(t)|3 \operatorname{times}(t)| \operatorname{merge}\left(t_{1}, t_{2}\right)$
Next we turn the set Term into a stream coalgebra

by defining functions out : Term $\rightarrow \mathbb{N}$ and tr : Term \rightarrow Term by induction on the structure of terms, following the stream diff. eqn's.

The term coalgebra

Term $\ni t::=\mathbf{c}\left|\underline{\sigma}\left(\sigma \in \mathbb{N}^{\omega}\right)\right| 2 \operatorname{times}(t)|3 \operatorname{times}(t)| \operatorname{merge}\left(t_{1}, t_{2}\right)$
Next we turn the set Term into a stream coalgebra

$$
\text { Term } \xrightarrow{\langle\text { out, tr }\rangle} \mathbb{N} \times \text { Term }
$$

by defining functions out : Term $\rightarrow \mathbb{N}$ and $\mathrm{tr}:$ Term \rightarrow Term by induction on the structure of terms, following the stream diff. eqn's.

The solution

By finality,

Using f, we define

$$
=f(c)
$$

$$
\sigma \| \tau=f(\operatorname{merge}(\underline{\sigma}, \underline{\tau}))
$$

(and similarly for $2 \times \sigma$ and $3 \times \sigma$).

Finally one shows that, indeed,

$$
\gamma^{\prime}=(2 \times \gamma) \|(3 \times \gamma) \quad \gamma(0)=1
$$

The solution

By finality,

Using f, we define

$$
\begin{aligned}
\gamma & =f(c) \\
\sigma \| \tau & =f(\operatorname{merge}(\underline{\sigma}, \underline{\tau}))
\end{aligned}
$$

(and similarly for $2 \times \sigma$ and $3 \times \sigma$).
Finally one shows that, indeed,

The solution

By finality,

Using f, we define

$$
\begin{aligned}
\gamma & =f(c) \\
\sigma \| \tau & =f(\operatorname{merge}(\underline{\sigma}, \underline{\tau}))
\end{aligned}
$$

(and similarly for $2 \times \sigma$ and $3 \times \sigma$).
Finally one shows that, indeed,

$$
\gamma^{\prime}=(2 \times \gamma) \|(3 \times \gamma) \quad \gamma(0)=1
$$

Not all is well

Let the function

$$
\text { even : } \mathbb{N}^{\omega} \rightarrow \mathbb{N}^{\omega}
$$

be given by the following system of SDEs:

$$
(\operatorname{even}(\sigma))(0)=\sigma(0), \quad \operatorname{even}(\sigma)^{\prime}=\operatorname{even}\left(\sigma^{\prime \prime}\right)
$$

(Solution: $\operatorname{even}(\sigma)=(\sigma(0), \sigma(2), \sigma(4), \ldots)$.

Not all is well

Let the function

$$
\text { even : } \mathbb{N}^{\omega} \rightarrow \mathbb{N}^{\omega}
$$

be given by the following system of SDEs:

$$
(\operatorname{even}(\sigma))(0)=\sigma(0), \quad \operatorname{even}(\sigma)^{\prime}=\operatorname{even}\left(\sigma^{\prime \prime}\right)
$$

(Solution: $\operatorname{even}(\sigma)=(\sigma(0), \sigma(2), \sigma(4), \ldots)$.

Not all is well

Now consider the following SDE:

$$
x(0)=0 \quad x^{\prime}=\operatorname{even}(x)
$$

It has many solutions, such as

Exercise: how many solutions are there?

Not all is well

Now consider the following SDE:

$$
x(0)=0 \quad x^{\prime}=\operatorname{even}(x)
$$

It has many solutions, such as

$$
\begin{gathered}
x=(0,0,0, \ldots) \quad x=(0,0,1,1,1, \ldots) \\
x=(0,0,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0, \ldots)
\end{gathered}
$$

Exercise: how many solutions are there?

Not all is well

Now consider the following SDE:

$$
x(0)=0 \quad x^{\prime}=\operatorname{even}(x)
$$

It has many solutions, such as

$$
\begin{gathered}
x=(0,0,0, \ldots) \quad x=(0,0,1,1,1, \ldots) \\
x=(0,0,0,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0, \ldots)
\end{gathered}
$$

Exercise: how many solutions are there?

The syntactic format is important

The syntactic method does not work for

$$
x(0)=0 \quad x^{\prime}=\operatorname{even}(x)
$$

The problem is that it does not translate uniquely to a corresponding stream coalgebra.

The technical problem is the second derivative in

The syntactic format is important

The syntactic method does not work for

$$
x(0)=0 \quad x^{\prime}=\operatorname{even}(x)
$$

The problem is that it does not translate uniquely to a corresponding stream coalgebra.

The technical problem is the second derivative in

The syntactic format is important

The syntactic method does not work for

$$
x(0)=0 \quad x^{\prime}=\operatorname{even}(x)
$$

The problem is that it does not translate uniquely to a corresponding stream coalgebra.

The technical problem is the second derivative in

$$
\operatorname{even}(\sigma)^{\prime}=\operatorname{even}\left(\sigma^{\prime \prime}\right)
$$

3. Formats for SDEs

- A general format for the syntactic method
- Three well-known sub-classes:
- Periodic streams
- Rational streams
- Context-free streams
- (Cf. formal languages.)

A useful set of operators on \mathbb{R}^{ω}

$$
\begin{gathered}
{[r]=(r, 0,0,0, \ldots) \quad \text { for each } r \in \mathbb{R}} \\
X=(0,1,0,0,0, \ldots) \\
(\sigma+\tau)(n)=\sigma(n)+\tau(n) \\
(\sigma \times \tau)(n)=\sum_{k=0}^{n} \sigma(k) \cdot \tau(n-k) \\
\sigma \times \sigma^{-1}=[1] \quad(\sigma(0) \neq 0)
\end{gathered}
$$

The corresponding system of SDEs

derivative:	initial value:
$[r]^{\prime}=[0]$	$[r](0)=r$
$X^{\prime}=[1]$	$X(0)=0$
$(\sigma+\tau)^{\prime}=\sigma^{\prime}+\tau^{\prime}$	$(\sigma+\tau)(0)=\sigma(0)+\tau(0)$
$(\sigma \times \tau)^{\prime}=\left(\sigma^{\prime} \times \tau\right)+\left([\sigma(0)] \times \tau^{\prime}\right)$	$(\sigma \times \tau)(0)=\sigma(0) \cdot \tau(0)$
$\left(\sigma^{-1}\right)^{\prime}=-\left[\sigma(0)^{-1}\right] \times \sigma^{\prime} \times \sigma^{-1}$	$\left(\sigma^{-1}\right)(0)=\sigma(0)^{-1}$

Illustrating the format for our syntactic method

derivative:	initial value:
$[r]^{\prime}=[0]$	$[r](0)=r$
$X^{\prime}=[1]$	$X(0)=0$
$(\sigma+\tau)^{\prime}=\sigma^{\prime}+\tau^{\prime}$	$(\sigma+\tau)(0)=\sigma(0)+\tau(0)$
$(\sigma \times \tau)^{\prime}=\left(\sigma^{\prime} \times \tau\right)+\left([\sigma(0)] \times \tau^{\prime}\right)$	$(\sigma \times \tau)(0)=\sigma(0) \cdot \tau(0)$
$\left(\sigma^{-1}\right)^{\prime}=-\left[\sigma(0)^{-1}\right] \times \sigma^{\prime} \times \sigma^{-1}$	$\left(\sigma^{-1}\right)(0)=\sigma(0)^{-1}$

The syntactic method applies in general to this kind of SDEs.
We shall explain "this kind".

Illustrating the format for our syntactic method

derivative:	initial value:
$[r]^{\prime}=[0]$	$[r](0)=r$
$X^{\prime}=[1]$	$X(0)=0$
$(\sigma+\tau)^{\prime}=\sigma^{\prime}+\tau^{\prime}$	$(\sigma+\tau)(0)=\sigma(0)+\tau(0)$
$(\sigma \times \tau)^{\prime}=\left(\sigma^{\prime} \times \tau\right)+\left([\sigma(0)] \times \tau^{\prime}\right)$	$(\sigma \times \tau)(0)=\sigma(0) \cdot \tau(0)$
$\left(\sigma^{-1}\right)^{\prime}=-\left[\sigma(0)^{-1}\right] \times \sigma^{\prime} \times \sigma^{-1}$	$\left(\sigma^{-1}\right)(0)=\sigma(0)^{-1}$

The syntactic method applies in general to this kind of SDEs.
We shall explain "this kind".

Illustrating the format for our syntactic method

$$
\begin{array}{|l|}
\hline \text { derivative: } \\
\hline[r]^{\prime}=[0] \\
X^{\prime}=[1] \\
(\sigma+\tau)^{\prime}=\sigma^{\prime}+\tau^{\prime} \\
(\sigma \times \tau)^{\prime}=\left(\sigma^{\prime} \times \tau\right)+\left([\sigma(0)] \times \tau^{\prime}\right) \\
\left(\sigma^{-1}\right)^{\prime}=-\left[\sigma(0)^{-1}\right] \times \sigma^{\prime} \times \sigma^{-1} \\
\hline
\end{array}
$$

On the left: terms with one operator (possibly a constant) ...

Illustrating the format for our syntactic method

$$
\begin{aligned}
& \text { derivative: } \\
& {[r]^{\prime}=[0]} \\
& X^{\prime}=[1] \\
& (\sigma+\tau)^{\prime}=\sigma^{\prime}+\tau^{\prime} \\
& (\sigma \times \tau)^{\prime}=\left(\sigma^{\prime} \times \tau\right)+\left([\sigma(0)] \times \tau^{\prime}\right) \\
& \left(\sigma^{-1}\right)^{\prime}=-\left[\sigma(0)^{-1}\right] \times \sigma^{\prime} \times \sigma^{-1} \\
& \hline
\end{aligned}
$$

On the left: ... and stream variables.

Illustrating the format for our syntactic method

$$
\begin{aligned}
& \hline \text { derivative: } \\
& {[r]^{\prime}=[0]} \\
& X^{\prime}=[1] \\
& (\sigma+\tau)^{\prime}=\sigma^{\prime}+\tau^{\prime} \\
& (\sigma \times \tau)^{\prime}=\left(\sigma^{\prime} \times \tau\right)+\left([\sigma(0)] \times \tau^{\prime}\right) \\
& \left(\sigma^{-1}\right)^{\prime}=-\left[\sigma(0)^{-1}\right] \times \sigma^{\prime} \times \sigma^{-1}
\end{aligned}
$$

On the right: terms built from various operators ...

Illustrating the format for our syntactic method

$$
\begin{aligned}
& \text { derivative: } \\
& \hline[r]^{\prime}=[0] \\
& X^{\prime}=[1] \\
& (\sigma+\tau)^{\prime}=\sigma^{\prime}+\tau^{\prime} \\
& (\sigma \times \tau)^{\prime}=\left(\sigma^{\prime} \times \tau\right)+\left([\sigma(0)] \times \tau^{\prime}\right) \\
& \left(\sigma^{-1}\right)^{\prime}=-\left[\sigma(0)^{-1}\right] \times \sigma^{\prime} \times \sigma^{-1}
\end{aligned}
$$

On the right: . . . and stream variables ...

Illustrating the format for our syntactic method

$$
\begin{aligned}
& \text { derivative:: } \\
& {[r]^{\prime}=[0]} \\
& X^{\prime}=[1] \\
& (\sigma+\tau)^{\prime}=\sigma^{\prime}+\tau^{\prime} \\
& (\sigma \times \tau)^{\prime}=\left(\sigma^{\prime} \times \tau\right)+\left([\sigma(0)] \times \tau^{\prime}\right) \\
& \left(\sigma^{-1}\right)^{\prime}=-\left[\sigma(0)^{-1}\right] \times \sigma^{\prime} \times \sigma^{-1}
\end{aligned}
$$

On the right: ... and derivatives of stream variables ...
(no double derivatives)

Illustrating the format for our syntactic method

$$
\begin{aligned}
& \text { derivative: } \\
& {[r]^{\prime}=[0]} \\
& X^{\prime}=[1] \\
& (\sigma+\tau)^{\prime}=\sigma^{\prime}+\tau^{\prime} \\
& (\sigma \times \tau)^{\prime}=\left(\sigma^{\prime} \times \tau\right)+\left([\sigma(0)] \times \tau^{\prime}\right) \\
& \left(\sigma^{-1}\right)^{\prime}=-\left[\sigma(0)^{-1}\right] \times \sigma^{\prime} \times \sigma^{-1}
\end{aligned}
$$

On the right: ... and derivatives of stream variables ...
(no double derivatives)

Illustrating the format for our syntactic method

$$
\begin{array}{|l|}
\hline \text { derivative: } \\
\hline[r]^{\prime}=[0] \\
X^{\prime}=[1] \\
(\sigma+\tau)^{\prime}=\sigma^{\prime}+\tau^{\prime} \\
\left.(\sigma \times \tau)^{\prime}=\sigma^{\prime} \times \tau\right)+\left([\sigma(0)] \times \tau^{\prime}\right) \\
\left(\sigma^{-1}\right)^{\prime}=-\left[\sigma(0)^{-1}\right] \times \sigma^{\prime} \times \sigma^{-1} \\
\hline
\end{array}
$$

On the right: . . . and initial values of stream variables.

The syntactic method

Theorem

Any system of SDEs such as

derivative:	initial value:
$[r]^{\prime}=[0]$	$[r](0)=r$
$X^{\prime}=[1]$	$X(0)=0$
$(\sigma+\tau)^{\prime}=\sigma^{\prime}+\tau^{\prime}$	$(\sigma+\tau)(0)=\sigma(0)+\tau(0)$
$(\sigma \times \tau)^{\prime}=\left(\sigma^{\prime} \times \tau\right)+\left([\sigma(0)] \times \tau^{\prime}\right)$	$(\sigma \times \tau)(0)=\sigma(0) \cdot \tau(0)$
$\left(\sigma^{-1}\right)^{\prime}=-\left[\sigma(0)^{-1}\right] \times \sigma^{\prime} \times \sigma^{-1}$	$\left(\sigma^{-1}\right)(0)=\sigma(0)^{-1}$

has a unique solution.
Proof: By the syntactic method.

The syntactic method

Theorem

Any system of SDEs such as

derivative:	initial value:
$[r]^{\prime}=[0]$	$[r](0)=r$
$X^{\prime}=[1]$	$X(0)=0$
$(\sigma+\tau)^{\prime}=\sigma^{\prime}+\tau^{\prime}$	$(\sigma+\tau)(0)=\sigma(0)+\tau(0)$
$(\sigma \times \tau)^{\prime}=\left(\sigma^{\prime} \times \tau\right)+\left([\sigma(0)] \times \tau^{\prime}\right)$	$(\sigma \times \tau)(0)=\sigma(0) \cdot \tau(0)$
$\left(\sigma^{-1}\right)^{\prime}=-\left[\sigma(0)^{-1}\right] \times \sigma^{\prime} \times \sigma^{-1}$	$\left(\sigma^{-1}\right)(0)=\sigma(0)^{-1}$

has a unique solution.
Proof: By the syntactic method.

Three well-known classes of streams

By restricting our format further, we obtain various concrete classes of streams.

We mention three of them:
Poriodic streams
Rational streams
Context-free sireams

Three well-known classes of streams

By restricting our format further, we obtain various concrete classes of streams.

We mention three of them:

- Periodic streams
- Rational streams
- Context-free streams

Three well-known classes of streams

initial value derivative
solution

$(1,1,2,5,14,42, \ldots)$

Catalan numbers

Three well-known classes of streams

initial value derivative solution

$$
\begin{array}{lll}
\sigma(0)=1 & \sigma^{\prime}=\sigma & (1,1,1, \ldots) \\
\sigma(0)=1 & \sigma^{\prime}=\sigma+\sigma & \left(2^{0}, 2^{1}, 2^{2}, \ldots\right) \\
\sigma(0)=1 & \sigma^{\prime}=\sigma \times \sigma & (1,1,2,5,14,42, \ldots)
\end{array}
$$

Catalan numbers

Three well-known classes of streams

initial value derivative format righthand side $\begin{array}{lll}\sigma(0)=1 & \sigma^{\prime}=\sigma & \text { one stream va } \\ \sigma(0)=1 & \sigma^{\prime}=\sigma+\sigma & \text { also sums (an } \\ \sigma(0)=1 & \sigma^{\prime}=\sigma \times \sigma & \text { also products }\end{array}$

Three well-known classes of streams

initial value

$$
\begin{array}{lll}
\text { initial value } & \text { derivative } & \text { format righthand side } \\
\sigma(0)=1 & \sigma^{\prime}=\sigma & \text { one stream variable } \\
\sigma(0)=1 & \sigma^{\prime}=\sigma+\sigma & \text { also sums (and scalars) } \\
\sigma(0)=1 & \sigma^{\prime}=\sigma \times \sigma & \text { also products }
\end{array}
$$

Three well-known classes of streams

Three well-known classes of streams

initial value derivative

$$
\begin{array}{lll}
\sigma(0)=1 & \sigma^{\prime}=\sigma & 1^{\omega} \\
\sigma(0)=1 & \sigma^{\prime}=\sigma+\sigma & \frac{1}{1-2 X} \\
\sigma(0)=1 & \sigma^{\prime}=\sigma \times \sigma & ? ?
\end{array}
$$

Three well-known classes of streams

initial value derivative class

$\sigma^{\prime}=\sigma$
perodic
$\sigma^{\prime}=\sigma+\sigma$
rational

Three well-known classes of streams

$$
\begin{array}{lll}
\text { initial value } & \text { derivative } & \text { class } \\
\sigma(0)=1 & \sigma^{\prime}=\sigma & \text { perodic } \\
\sigma(0)=1 & \sigma^{\prime}=\sigma+\sigma & \text { rational } \\
\sigma(0)=1 & \sigma^{\prime}=\sigma \times \sigma & \text { context-free }
\end{array}
$$

4. Streams and coinduction

We saw an elementary example of coinduction (when proving the associativity of the shuffle product).

Time allowing, we will next illustrate the coinduction proof principle for streams with a non-trivial example.

4. Streams and coinduction

We saw an elementary example of coinduction (when proving the associativity of the shuffle product).

Time allowing, we will next illustrate the coinduction proof principle for streams with a non-trivial example.

A proof by coinduction: Moessner's theorem

- A. Moessner (1951), proof by O. Perron (1951) and I. Paasche (1952).
- Cf. Ralf Hinze: Scans and convolutions - a calculational proof of Moessner's theorem (Oxford University, 2010).
- Our proof: by coinduction (Niqui \& R., 2011) . . .
- . . . is a student's exercise.
- Cf. the original proof: serious binomial coefficient manipulation!!

Moessner's theorem ($k=3$)

$$
\begin{array}{llllllllllllll}
\text { nat } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & \cdots \\
& & & & & & & 7 & & & & & & \\
\text { Drop }_{3} & 1 & 2 & & 4 & 5 & & 7 & 8 & & 10 & 11 & \cdots &
\end{array}
$$

Moessner's theorem ($k=3$)

nat	1	2	3	4	5	6	7	8	9	10	11	12	\cdots
Drop $_{3}$	1	2		4	5		7	8		10	11	\cdots	

Drop $_{2}$

 -19 37
Moessner's theorem ($k=3$)

$$
\begin{array}{llllllllllllll}
\text { nat } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & \cdots \\
& & & & & & & & & & 10 & 11 & \cdots & \\
\text { Drop }_{3} & 1 & 2 & & 4 & 5 & & 7 & 8 & & 10 & 11 & \cdots & \\
\Sigma & 1 & 3 & 7 & 12 & 19 & 27 & 37 & 48 & \cdots & & & &
\end{array}
$$

$$
\text { Drop }_{2}
$$

$$
\begin{array}{lllll}
\Sigma & 1 & 8 & 27 & 64
\end{array}
$$

Moessner's theorem ($k=3$)

$$
\begin{array}{llllllllllllll}
\text { nat } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & \cdots \\
\text { Drop }_{3} & 1 & 2 & & 4 & 5 & & 7 & 8 & & 10 & 11 & \cdots & \\
\Sigma & 1 & 3 & 7 & 12 & 19 & 27 & 37 & 48 & \cdots & & & & \\
\Sigma & & & & & & & & & & & & & \\
\text { Drop }_{2} & 1 & & 7 & & 19 & & 37 & & \cdots & & & &
\end{array}
$$

$$
8 \quad 27 \quad 64
$$

Moessner's theorem ($k=3$)

$$
\begin{array}{llllllllllllll}
\text { nat } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & \cdots \\
\text { Drop }_{3} & 1 & 2 & & 4 & 5 & & 7 & 8 & & 10 & 11 & \cdots & \\
\Sigma & 1 & 3 & 7 & 12 & 19 & 27 & 37 & 48 & \cdots & & & & \\
\text { Drop } 2 & 1 & & 7 & & 19 & & 37 & & \cdots & & & & \\
\Sigma & 1 & 8 & 27 & 64 & \cdots & & & & & & & &
\end{array}
$$

Moessner's theorem ($k=3$)

$$
\begin{array}{llllllllllllll}
\text { nat } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & \cdots \\
\text { Drop }_{3} & 1 & 2 & & 4 & 5 & & 7 & 8 & & 10 & 11 & \cdots & \\
\Sigma & 1 & 3 & 7 & 12 & 19 & 27 & 37 & 48 & \cdots & & & & \\
\text { Drop }_{2} & 1 & & 7 & & 19 & & 37 & & \cdots & & & & \\
\Sigma & 1 & 8 & 27 & 64 & \cdots & & & & & & & & \\
& = & & & & & & & & & & & & \\
\text { nat }^{3} & 1^{3} & 2^{3} & 3^{3} & 4^{3} & \cdots & & & & & & & &
\end{array}
$$

Moessner's theorem ($k=4$)

nat	1	2	3	4	5	6	7	8	9	10	11
Drop_{4}		2	3		5	6	7		9	10	11
Σ		3	6	11	$\cdot 17$	24	33	43	54		
Drop 3		3		11	$\cdot 17$		33	43		67	8
Σ	1	4	15	32	65	108	175				
Drop 2			15		65		175				

Moessner's theorem ($k=4$)

nat	1	2	3	4	5	6	7	8	9	10	11	\cdots
Drop $_{4}$	1	2	3		5	6	7		9	10	11	\cdots

Σ	1	3	6	11	17	24	33	43	54

Drop $_{3}$	1	3	11	17	33	43	67	81

$\begin{array}{llllllll}\Sigma & 1 & 4 & 15 & 32 & 65 & 108 & 175\end{array}$

Drop 2
$\Sigma \quad 1 \begin{array}{llll}16 & 81 & 256\end{array}$

Moessner's theorem ($k=4$)

nat	1	2	3	4	5	6	7	8	9	10	11	\cdots
Drop $_{4}$	1	2	3		5	6	7		9	10	11	\cdots
Σ	1	3	6	11	17	24	33	43	54	\cdots		
Drop	1	3		11	17		33	43		67	81	\cdots
Σ	1	4	15	32	65	108	175	\cdots				

Moessner's theorem ($k=4$)

$$
\begin{array}{lllllllllllll}
\text { nat } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \cdots \\
\text { Drop }_{4} & 1 & 2 & 3 & & 5 & 6 & 7 & & 9 & 10 & 11 & \cdots \\
\Sigma & 1 & 3 & 6 & 11 & 17 & 24 & 33 & 43 & 54 & \cdots & & \\
\text { Drop }_{3} & 1 & 3 & & 11 & 17 & & 33 & 43 & & 67 & 81 & \cdots \\
\Sigma & 1 & 4 & 15 & 32 & 65 & 108 & 175 & \cdots & & & &
\end{array}
$$

Moessner's theorem ($k=4$)

$$
\begin{array}{lllllllllllll}
\text { nat } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \cdots \\
\text { Drop }_{4} & 1 & 2 & 3 & & 5 & 6 & 7 & & 9 & 10 & 11 & \cdots \\
\Sigma & 1 & 3 & 6 & 11 & 17 & 24 & 33 & 43 & 54 & \cdots & & \\
\Sigma & 1 & 3 & & 11 & 17 & & 33 & 43 & & 67 & 81 & \cdots \\
\text { Drop }_{3} & 1 & & & & & & & & & & & \\
\Sigma & 1 & 4 & 15 & 32 & 65 & 108 & 175 & \cdots & & & &
\end{array}
$$

Moessner's theorem ($k=4$)

nat	1	2	3	4	5	6	7	8	9	10	11	\cdots
Drop $_{4}$	1	2	3		5	6	7		9	10	11	\cdots
Σ	1	3	6	11	17	24	33	43	54	\cdots		
Drop $_{3}$	1	3		11	17		33	43		67	81	\cdots
Σ	1	4	15	32	65	108	175	\cdots				
Drop	1		15		65		175	\cdots				

Moessner's theorem ($k=4$)

nat	1	2	3	4	5	6	7	8	9	10	11	\cdots

Drop $_{4} 123$
567
$9 \quad 10 \quad 11 \quad \cdots$
$\Sigma \quad 1 \quad 3 \quad 6 \quad 11 \quad 17 \quad 24 \quad 33 \quad 43 \quad 54 \quad \ldots$
$\begin{array}{lllllllll}\text { Drop }_{3} & 1 & 3 & 11 & 17 & 33 & 43 & 67 & \ldots\end{array}$
$\Sigma \quad 1 \quad 4 \quad 15 \quad 32 \quad 65 \quad 108 \quad 175 \quad \cdots$
$\begin{array}{lll}\text { Drop }_{2} 15 & 175 & \ldots\end{array}$
$\Sigma \quad 1 \quad 16 \quad 81 \quad 256 \quad \cdots$

Moessner's theorem ($k=4$)

Drop $_{4} 123$

5	6	7

$9 \quad 10 \quad 11 \quad \ldots$
$\Sigma \quad 1 \quad 3 \quad 6 \quad 11 \quad 17 \quad 24 \quad 33 \quad 43 \quad 54 \quad \ldots$
$\begin{array}{llllllllll}\text { Drop }_{3} & 1 & 3 & 11 & 33 & 43 & 67 & 81 & \ldots\end{array}$
$\Sigma \quad 1 \quad 4 \quad 15 \quad 32 \quad 65 \quad 108 \quad 175 \quad \ldots$
$\begin{array}{lll}\text { Drop }_{2} 15 & 175 & \ldots\end{array}$
$\Sigma \quad 1 \quad 16 \quad 81 \quad 256 \quad \cdots$
$=1^{4} \quad 2^{4} \quad 3^{4} \quad 4^{4} \quad \cdots$

Moessner's theorem ($k=5$)

etc.

Moessner's theorem ($k=5$)

Moessner's theorem ($k=5$)

$$
\begin{array}{lllllllllllll}
\text { nat } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \cdots \\
& & & & & & & & & & \\
\text { Drop }_{5} & 1 & 2 & 3 & 4 & & 6 & 7 & 8 & 9 & & 11 & \cdots \\
\Sigma & 1 & 3 & 6 & 10 & 16 & 23 & 31 & 40 & 51 & \ldots & &
\end{array}
$$

Moessner's theorem ($k=5$)

nat $\begin{array}{lllllllllllll} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \ldots\end{array}$
$\begin{array}{lllllllllll}D_{r o p} & 1 & 2 & 3 & 4 & 6 & 7 & 8 & 9 & 11 & \cdots\end{array}$
$\Sigma \quad 1 \begin{array}{llllllllll} \\ \Sigma & 1 & 3 & 6 & 10 & 16 & 23 & 31 & 40 & 51\end{array} \cdots$
$\begin{array}{lllllllll}D_{r o p} & 1 & 3 & 6 & 16 & 23 & 31 & 51 & \cdots\end{array}$
etc.

Moessner's theorem ($k=5$)

$$
\begin{array}{lllllllllllll}
\text { nat } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \ldots \\
\text { Drop }_{5} & 1 & 2 & 3 & 4 & & 6 & 7 & 8 & 9 & & 11 & \cdots \\
\Sigma & 1 & 3 & 6 & 10 & 16 & 23 & 31 & 40 & 51 & \ldots & & \\
\text { Drop }_{4} & 1 & 3 & 6 & & 16 & 23 & 31 & & 51 & \ldots & & \\
\text { etc. } & & & & & & & \ldots & & & & &
\end{array}
$$

Moessner's theorem ($k=5$)

nat $\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \ldots\end{array}$
$\begin{array}{lllllllllll}D_{r o p} & 1 & 2 & 3 & 4 & 6 & 7 & 8 & 9 & 11 & \cdots\end{array}$
$\Sigma \quad 1 \quad 3 \quad 6 \quad 10 \quad 16 \quad 23 \quad 31 \quad 40$
$\left.\begin{array}{llllllll}D_{r o p} & 1 & 3 & 6 & 16 & 23 & 31 & 51\end{array}\right]$
etc.

$$
=1^{5} \quad 2^{5} \quad 3^{5} \quad 4^{5} \quad \ldots
$$

Approach: use coinduction on streams

Coinduction proof principle for streams:

$$
(\sigma, \tau) \in R, \text { bisimulation relation } \Rightarrow \sigma=\tau
$$

We formulate Moessner's theorem as an equality of two streams.

Next we shall prove that these streams are equal
by showing that they behave the same.
That is, we show that they are related by a bisimulation.

Approach: use coinduction on streams

Coinduction proof principle for streams:

$$
(\sigma, \tau) \in R, \text { bisimulation relation } \Rightarrow \sigma=\tau
$$

We formulate Moessner's theorem as an equality of two streams.

Next we shall prove that these streams are equal
by showing that they behave the same.
That is, we show that they are related by a bisimulation.

Approach: use coinduction on streams

Coinduction proof principle for streams:

$$
(\sigma, \tau) \in R, \text { bisimulation relation } \Rightarrow \sigma=\tau
$$

We formulate Moessner's theorem as an equality of two streams.

Next we shall prove that these streams are equal .
... by showing that they behave the same.
That is, we show that they are related by a bisimulation.

Approach: use coinduction on streams

Coinduction proof principle for streams:

$$
(\sigma, \tau) \in R, \text { bisimulation relation } \Rightarrow \sigma=\tau
$$

We formulate Moessner's theorem as an equality of two streams.

Next we shall prove that these streams are equal .
... by showing that they behave the same.
That is, we show that they are related by a bisimulation.

Formalising Moessner's theorem

$$
\text { nat }^{3}=\Sigma \circ \operatorname{Drop}_{2} \circ \Sigma \circ \operatorname{Drop}_{3}(\text { nat })
$$

We will define all of the above ingredients using stream differential equations

This will

$$
\begin{aligned}
& \text { make the inherent circularity explicit, and } \\
& \text { help us contruct a suitable bisimulation relation! }
\end{aligned}
$$

Formalising Moessner's theorem

$$
\text { nat }^{3}=\Sigma \circ \operatorname{Drop}_{2} \circ \Sigma \circ \operatorname{Drop}_{3}(\text { nat })
$$

We will define all of the above ingredients using
stream differential equations

This will

- make the inherent circularity explicit, and
- help us contruct a suitable bisimulation relation!

Formalising Moessner's theorem

$$
\text { nat }^{3}=\Sigma \circ \operatorname{Drop}_{2} \circ \Sigma \circ \operatorname{Drop}_{3}(\text { nat })
$$

where nat $=(1,2,3, \ldots)$ satisfies

$$
\operatorname{nat}(0)=1 \quad \text { nat }=\text { nat }+ \text { ones }
$$

with ones $=(1,1,1, \ldots)$; and

$$
n a t^{3}=\left(1^{3}, 2^{3}, 3^{3}, \ldots\right)=\text { nat } \odot \text { nat } \odot \text { nat }
$$

Formalising Moessner's theorem

$$
\text { nat }^{3}=\Sigma \circ \operatorname{Drop}_{2} \circ \Sigma \circ \operatorname{Drop}_{3}(\text { nat })
$$

where nat $=(1,2,3, \ldots)$ satisfies

$$
\operatorname{nat}(0)=1 \quad \text { nat }^{\prime}=\text { nat }+ \text { ones }
$$

with ones $=(1,1,1, \ldots)$; and

$$
\text { nat }^{3}=\left(1^{3}, 2^{3}, 3^{3}, \ldots\right)=\text { nat } \odot \text { nat } \odot \text { nat }
$$

with

$$
(\sigma \odot \tau)(0)=\sigma(0) \cdot \tau(0) \quad(\sigma \odot \tau)^{\prime}=\sigma^{\prime} \odot \tau^{\prime}
$$

Formalising Moessner's theorem

$$
\text { nat }^{3}=\Sigma \circ \operatorname{Drop}_{2} \circ \Sigma \circ \operatorname{Drop}_{3}(\text { nat })
$$

and where

$$
\Sigma(\sigma)=(\sigma(0), \sigma(0)+\sigma(1), \sigma(0)+\sigma(1)+\sigma(2), \ldots)
$$

$\operatorname{Drop}_{2}(\sigma)=(\sigma(0), \sigma(2), \sigma(4), \ldots)$
$\operatorname{Drop}_{3}(\sigma)=(\sigma(0), \sigma(1), \sigma(3), \sigma(4), \sigma(6), \sigma(7), \ldots)$

Formalising Moessner's theorem

$$
\text { nat }^{3}=\Sigma \circ \operatorname{Drop}_{2} \circ \Sigma \circ \operatorname{Drop}_{3}(\text { nat })
$$

and where

$$
\begin{aligned}
\Sigma(\sigma) & =(\sigma(0), \sigma(0)+\sigma(1), \sigma(0)+\sigma(1)+\sigma(2), \ldots) \\
\operatorname{Drop}_{2}(\sigma) & =(\sigma(0), \sigma(2), \sigma(4), \ldots) \\
\operatorname{Drop}_{3}(\sigma) & =(\sigma(0), \sigma(1), \sigma(3), \sigma(4), \sigma(6), \sigma(7), \ldots)
\end{aligned}
$$

can all be specified by elementary stream diff. equations.

Proving Moessner's theorem

$$
\text { nat }^{3}=\Sigma \circ \operatorname{Drop}_{2} \circ \Sigma \circ \operatorname{Drop}_{3}(\text { nat })
$$

It now suffices to construct a bisimulation R with

Easy, using the previous stream differential equations

Proving Moessner's theorem

$$
\text { nat }^{3}=\Sigma \circ \operatorname{Drop}_{2} \circ \Sigma \circ \operatorname{Drop}_{3}(\text { nat })
$$

It now suffices to construct a bisimulation R with

$$
\left\langle\text { nat }^{3}, \Sigma \circ \operatorname{Drop}_{2} \circ \Sigma \circ \operatorname{Drop}_{3}(\text { nat })\right\rangle \in R
$$

Easy, using the previous stream differential equations

Proving Moessner's theorem

$$
\text { nat }^{3}=\Sigma \circ \operatorname{Drop}_{2} \circ \Sigma \circ \operatorname{Drop}_{3}(\text { nat })
$$

It now suffices to construct a bisimulation R with

$$
\left\langle\text { nat }^{3}, \Sigma \circ \operatorname{Drop}_{2} \circ \Sigma \circ \operatorname{Drop}_{3}(\text { nat })\right\rangle \in R
$$

Easy, using the previous stream differential equations . . .

Proving Moessner's theorem

$$
\text { nat }^{3}=\Sigma \circ \operatorname{Drop}_{2} \circ \Sigma \circ \operatorname{Drop}_{3}(\text { nat })
$$

Proof: We define R as the smallest set such that

(i) $\left\langle\right.$ nat $^{3}, \Sigma \circ \operatorname{Drop}_{2} \circ \Sigma \circ \operatorname{Drop}_{3}($ nat $\left.)\right\rangle \in R$
(ii) $\left\langle\right.$ nat $\odot(\text { nat }+ \text { ones })^{2}, \Sigma \circ \operatorname{Drop}_{2}^{0} \circ \Sigma \circ \operatorname{Drop}_{3}^{1}($ nat $\left.)\right\rangle \in R$
(iii) if $\left\langle\sigma_{1}, \sigma_{2}\right\rangle \in P$ and $\left\langle\tau_{1}, \tau_{2}\right\rangle \in P$ then $\left\langle\sigma_{1}+\tau_{1}, \sigma_{2}+\tau_{2}\right\rangle \in P$
(iv) $\langle\sigma, \sigma\rangle \in R \quad$ (all σ)

Then: R is a bisimulation relation.

Proving Moessner's theorem

$$
\text { nat }^{3}=\Sigma \circ \operatorname{Drop}_{2} \circ \Sigma \circ \operatorname{Drop}_{3}(\text { nat })
$$

Proof. We define R as the smallest set such that
(i) $\left\langle\right.$ nat $^{3}, \Sigma \circ \operatorname{Drop}_{2} \circ \Sigma \circ \operatorname{Drop}_{3}($ nat $\left.)\right\rangle \in R$
(ii) $\left\langle\right.$ nat $\odot(\text { nat }+ \text { ones })^{2}, \Sigma \circ \operatorname{Drop}_{2}^{0} \circ \Sigma \circ \operatorname{Drop}_{3}^{1}($ nat $\left.)\right\rangle \in R$ (iii) if $\left\langle\sigma_{1}, \sigma_{2}\right\rangle \in R$ and $\left\langle\tau_{1}, \tau_{2}\right\rangle \in R$ then $\left\langle\sigma_{1}+\tau_{1}, \sigma_{2}+\tau_{2}\right\rangle \in R$ (iv) $\langle\sigma, \sigma\rangle \in R \quad$ (all σ)

Then: R is a bisimulation relation.

Proving Moessner's theorem

$$
\text { nat }^{3}=\Sigma \circ \operatorname{Drop}_{2} \circ \Sigma \circ \operatorname{Drop}_{3}(\text { nat })
$$

Proof. We define R as the smallest set such that
(i) $\left\langle\right.$ nat $^{3}, \Sigma \circ \operatorname{Drop}_{2} \circ \Sigma \circ \operatorname{Drop}_{3}($ nat $\left.)\right\rangle \in R$
(ii) $\left\langle\right.$ nat $\odot(\text { nat }+ \text { ones })^{2}, \Sigma \circ \operatorname{Drop}_{2}^{0} \circ \Sigma \circ \operatorname{Drop}_{3}^{1}($ nat $\left.)\right\rangle \in R$
(iii) if $\left\langle\sigma_{1}, \sigma_{2}\right\rangle \in R$ and $\left\langle\tau_{1}, \tau_{2}\right\rangle \in R$ then $\left\langle\sigma_{1}+\tau_{1}, \sigma_{2}+\tau_{2}\right\rangle \in R$
(iv) $\langle\sigma, \sigma\rangle \in R \quad$ (all σ)

Then: R is a bisimulation relation.

Proving Moessner's theorem

$$
\text { nat }^{3}=\Sigma \circ \operatorname{Drop}_{2} \circ \Sigma \circ \operatorname{Drop}_{3}(\text { nat })
$$

Proof: We define R as the smallest set such that
(i) $\left\langle\right.$ nat $^{3}, \Sigma \circ \operatorname{Drop}_{2} \circ \Sigma \circ \operatorname{Drop}_{3}($ nat $\left.)\right\rangle \in R$
(ii) $\left\langle\right.$ nat $\odot(\text { nat }+ \text { ones })^{2}, \Sigma \circ \operatorname{Drop}_{2}^{0} \circ \Sigma \circ \operatorname{Drop}_{3}^{1}($ nat $\left.)\right\rangle \in R$
(iii) if $\left\langle\sigma_{1}, \sigma_{2}\right\rangle \in R$ and $\left\langle\tau_{1}, \tau_{2}\right\rangle \in R$ then $\left\langle\sigma_{1}+\tau_{1}, \sigma_{2}+\tau_{2}\right\rangle \in R$
(iv) $\langle\sigma, \sigma\rangle \in R \quad$ (all σ)

Then: R is a bisimulation relation.

Proving Moessner's theorem

$$
\text { nat }^{3}=\Sigma \circ \operatorname{Drop}_{2} \circ \Sigma \circ \operatorname{Drop}_{3}(\text { nat })
$$

Proof: We define R as the smallest set such that
(i) $\left\langle\right.$ nat $^{3}, \Sigma \circ \operatorname{Drop}_{2} \circ \Sigma \circ \operatorname{Drop}_{3}($ nat $\left.)\right\rangle \in R$
(ii) $\left\langle\right.$ nat $\odot(\text { nat }+ \text { ones })^{2}, \Sigma \circ \operatorname{Drop}_{2}^{0} \circ \Sigma \circ \operatorname{Drop}_{3}^{1}($ nat $\left.)\right\rangle \in R$
(iii) if $\left\langle\sigma_{1}, \sigma_{2}\right\rangle \in R$ and $\left\langle\tau_{1}, \tau_{2}\right\rangle \in R$ then $\left\langle\sigma_{1}+\tau_{1}, \sigma_{2}+\tau_{2}\right\rangle \in R$
(iv) $\langle\sigma, \sigma\rangle \in R \quad$ (all σ)

Then: R is a bisimulation relation.

Proving Moessner's theorem

The proof for all k : make one big bisimulation
Proof has been verified in theorem prover (COQ), by Krebbers, Parlant, Silva.

Proving Moessner's theorem

The proof for all k : make one big bisimulation
Proof has been verified in theorem prover (COQ), by Krebbers, Parlant, Silva.

5. Discussion

- We take streams σ as basic entities, instead of focussing on their individual elements $\sigma(n)$.
- This prevents lots of unnecessary bookkeeping (cf. binomial coefficients).
- The (final) coalgebra structure of the set of streams has a natural interpretation in terms of a calculus, in analogy to classical calculus.
- There is initial evidence that this leads to efficient proofs that can be easily automated.

5. Discussion

- We take streams σ as basic entities, instead of focussing on their individual elements $\sigma(n)$.
- This prevents lots of unnecessary bookkeeping (cf. binomial coefficients).
- The (final) coalgebra structure of the set of streams has a natural interpretation in terms of a calculus, in analogy to classical calculus.
- There is initial evidence that this leads to efficient proofs that can be easily automated.

5. Discussion

- We take streams σ as basic entities, instead of focussing on their individual elements $\sigma(n)$.
- This prevents lots of unnecessary bookkeeping (cf. binomial coefficients).
- The (final) coalgebra structure of the set of streams has a natural interpretation in terms of a calculus, in analogy to classical calculus.
- There is initial evidence that this leads to efficient proofs that can be easily automated.

5. Discussion

- We take streams σ as basic entities, instead of focussing on their individual elements $\sigma(n)$.
- This prevents lots of unnecessary bookkeeping (cf. binomial coefficients).
- The (final) coalgebra structure of the set of streams has a natural interpretation in terms of a calculus, in analogy to classical calculus.
- There is initial evidence that this leads to efficient proofs that can be easily automated.

5. Discussion

- We take streams σ as basic entities, instead of focussing on their individual elements $\sigma(n)$.
- This prevents lots of unnecessary bookkeeping (cf. binomial coefficients).
- The (final) coalgebra structure of the set of streams has a natural interpretation in terms of a calculus, in analogy to classical calculus.
- There is initial evidence that this leads to efficient proofs that can be easily automated.

