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Algebra-coalgebra duality in Brzozowski’s minimization algorithm
Bonchi, Bonsangue, Hansen, Panangaden, Rutten, Silva
ACM Transactions on Computational Logic (TOCL) 2013



This lecture will explain two diagrams:
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The dual equivalence of equations and coequations for automata.
A. Ballester-Bolinches, E. Cosme-Llopez, J. Rutten.
Information and Computation Vol. 244, 2015, pp. 49-75.



Motivation

- A modern perspective on a classical subject
- A good illustration of the algebra-coalgebra duality

- Leading to very efficient algorithms (in Lecture four)



© N o o ~ W DN

Table of contents

. (Co)algebra - a mini tutorial

A small exam: algebra or coalgebra?

The scene: the algebra-coalgebra duality of automata
Duality of reachability and observability

The coinduction proof method

Equations and coequations

A dual equivalence

In conclusion



1. (Co)algebra - a mini tutorial



Algebras

algebras are pairs (X, a) where:



Coalgebras

X
coalgebras are pairs (X, «) where: o

F(X)



Examples of algebras



Examples of algebras

1+N Y

[O,successodl

N

N
Jsuccessor

N



Examples of coalgebras

0{ x—2 .y = (ay) €a(x)



Examples of coalgebras

2
2UJ
%ead
(head, tail) = ow
2« 2w Jtail



Thus:

F(X) X
algebras: o{ coalgebras: a

X F(X)



Thus:

X
algebras: J coalgebras: l
X



All the rest: by example

homomorphisms
bisimulations
initial algebras, final coalgebras

induction, coinduction
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2. A small exam: algebra or coalgebra?



Initial state

1

XJ
X
where X is a (possibly infinite) set and

1=1{0}

xeX

We will call X pointed, with point (or: initial state) x.



Accepting states

2

%
X
where

2={0,1}
We will call ¢ a colouring. And:

- if ¢(x) = 1 then we call x accepting.
- if ¢(x) = 0 then we call x non-accepting.



(Deterministic) automaton

o

XA

with
X is the set of states

A is the input alphabet
-XA={glg: A= X}

notation:
CO2Ay) & ax@=-vy



(Deterministic) automaton

Because

XxA— X X — XA

1%

we have:

and J(oz

><<—z><



(Deterministic) automaton

Because
XxA——X o
we have:
X xA
Jo} and
X

It is both an algebra and a coalgebra

X — XA



A pointed automaton (X, x, «)



A pointed automaton (X, x, «)

It is an algebra, not a coalgebra.



A coloured automaton (X, ¢, a)



A coloured automaton (X, ¢, a)

It is a coalgebra, not an algebra.



A pointed and coloured automaton (X, x, ¢, «)



A pointed and coloured automaton (X, x, ¢, «)

is neither an algebra nor a coalgebra.



© N o o ~ W DN

Table of contents

. (Co)algebra - a mini tutorial

A small exam: algebra or coalgebra?

The scene: the algebra-coalgebra duality of automata
Duality of reachability and observability

The coinduction proof method

Equations and coequations

A dual equivalence

In conclusion



3. The scene:

the algebra-coalgebra duality of automata

cf. Kalman’s duality [1959] controllability - observability

cf. Arbib and Manes categorical approach to automata



The scene: initial algebra and final coalgebra
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first: homomorphisms of automata



Initial algebra

1 2
X C
< \ / e?

A — — o3 X — = — s 2K
Ix Oc
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(A*)A,,,AXA 77$(2A*)A



The pointed automaton of words

(A*)*

¢ = the empty word as initial state



The pointed automaton of words

o(w)(a)=w-a

that is, transitions:



Initial algebra semantics

1

V X
3

A X
dlry,

. c{

(A*)AfffﬁxA
()

rv(w) = xy : the state reached from x on input w



Initial algebra semantics: reachability

(A*)A *(;X)*A% XA

rv = the reachability map

if rv is surjective then (X, x,a) is called reachable



Final coalgebra

1 2
X C
i \/ 5?
A oo s X—— = — 5O
5% Oc
g OéJV T

(A* )A *(;X)*A% XA *(505/? (ZA* )A




27" —

The coloured automaton of languages

2
e?

2A

T

(27 )

{91g:Ar—=2} = {L|LC A"}



The coloured automaton of languages

2
e’

2A

T

(2%)*

accepting states: c?(L)=1 < c€lL

transitions: 7(L)(a) = Ly = {we A" |a-welL}



Transitions: o a e

where L, = {weA*|a-wel}.

For instance,

ab

Note that every state L accepts . . . the language L.



Final coalgebra semantics

o:(x) = the language accepted by x



Final coalgebra semantics: observability

2
(o
/ e?

X-——— -2~
Oc
XA - — 5 (24)A
(0c)*
oc = the observability map

if o¢ is injective then (X, c,«) is called observable



reachable: y=x53 2Z=X3
not observable: o.(y) = o:(z) = 1+{ab}a

and so: not minimal



Minimality

1 2
X C
€ \ / e?

A — - s X = — = — 32~
Ix Oc
o OZJ( T
(A*)AfffﬁxA777$(2A*)A
minimal = reachable 4 observable

Thatis, rx surjective and o; injective.



Synthesis

Given a language L € 24",  find minimal

(X, x,c,a)
accepting L:
1 2
X c
] \ / e?
* o A*
A 7 + X & +2
g OéJV T

(A*)A777‘>XA777‘>(2A*)A

oc(x)=1L



Synthesis: finding a man in the middle

1 L
|




Synthesis: finding a man in the middle

1 L
|
A* . 2A*

n(v)=nr(w) iff Vvue A", viels wuel

i.e., ker(r) = Mpyhill-Nerode equivalence



rn =

Synthesis by epi-mono factorisation

moe

reachable: e is surjective

observable: mis injective

hence: A*/ker(r) = minimall



Synthesis by epi-mono factorisation

A* (L) oA
&Je?
L 2
At /ker(r)) = (L) = {Lu|weA*}

Myhill-Nerode meet Brzozowski
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4. The duality of reachability and observability

with an application to Brzozowski’s minimization algorithm

cf. paper:

Algebra-coalgebra duality in Brzozowski’s minimization algorithm
Bonchi, Bonsangue, Hansen, Panangaden, Rutten, Silva
ACM Transactions on Computational Logic (TOCL) 2013

contains various generalisations (Moore, weighted, probabilistic)



Recall: reachability and observability

1 2
X C
€ \ / g7

* o A*

A - . + X % +2
g OéJ/ T
(A*)A,,,ﬁxA,,,%(zA*)A

if rv is surjective then (X, x,«) is called reachable
if oc is injective then (X, c,«) is called observable

minimal = reachable 4+ observable



Reversing automata

A ——— X 2(-) p L — T
r E— or
o O{ ZO‘J( 2°
(A*)A - XA (2X)A - (2A* )A
2(-) = contravariant powerset functor

(2X,2%) = deterministic reverse of (X, a)



Contravariant powerset functor

v 2v
2(=) . gl > [29
w 2w

where
2V ={S|ScVv}y 298)= g '(S)



Contravariant powerset functor

v 2v
2(=) . gl — ng
w ow

where
2V ={S|ScVv}y 298)= g '(S)

Theorem: g is surjective = 29 is injective.



Contravariant powerset functor

v 2v
2(=) . gl > ng
w 2w

where
2V ={S|ScVv}y 298)= g '(S)

Theorem: g is surjective = 29 is injective.

Proof: exercise (use functoriality).



Reversing transitions

X x A 2X><A (2X)A
|22 1]
 —
X 2X 2X



point <= colouring

2X



Reversing the entire automaton

— X
X 2(-) 2
XA (2X)A

point and colouring are exchanged . . .
transitions are reversed . . .
the result is again deterministic . . .

(X, x, ¢, o) accepts L = (2%, ¢, 2%, 2%) accepts L™ !



Duality between reachability and observablity

1 2
5 \ / 2¢
A 2(—> 2X — A"

o aJ{ 2"{ 2°

(A*)A . XA (2X)A - (2A* )A




Duality between reachability and observablity

A 2(—> 2X — oA
o aJ{ 2“{ 2°
(A*)A SN XA (2X)A - (2A* )A

Theorem: r is surjective = 2" is injective.



Duality between reachability and observablity

A 2(—> 2X — oA
o aJ{ 2“{ 2°
(A*)A SN XA (2X)A - (2A* )A

Theorem: r is surjective = 2" is injective.
=

Theorem: (X, x, ) is reachable = (2%X,2% 2%)is
observable.



Corollary: Brzozowski’'s minimization algorithm

(i) X accepts L

(i) 2X accepts L

(iii) take reachable part: Y = reach(2X)
(iv) 2¥ accepts (L™®)® = L

(v) Yis reachable = 2 is observable
(vi) take reachable part

)

(vii) result: reachable + observable = minimal automaton for L
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5. The coinduction proof method

- is here illustrated: equality of languages

- is used in various theorem provers (COQ, Isabelle, CIRC)
Coinductive proof techniques for language equivalence

J. Rot, M. Bonsangue, J. Rutten
Proceedings LATA 2013, LNCS 7810



Bisimulation relations on automata

Ja
XA
R C X x X is a bisimulation:
V(x,y) e R, YacA: (xa, ya)€R

where
Xa= a(x)(@  Ya= a(y)(a)



. . . on coloured automata

R C X x X is a bisimulation if, for all (x, y) € R,
VaeA: (Xa ya)€R

and
c(x) = c(y)



Bisimulations on languages

R C 24 x 2*" s a bisimulation if, for all (K, L) € R,
VacA: (Ks La)€eR

and
ceeK & eclL



Bisimulations on languages

R C 24 x 24" s a bisimulation if, for all (K, L) € R,
VacA: (Ka La) €R

and
ceeK & el

where we recall that

Kai={w|a-weK}

La={wla-wel}



Coinduction proof principle

By the finality of 24", we have:

(K,L) € R, bisimulaton = K=1L



Example: Arden’s Rule

We will prove Arden’s Rule:

L=KL+M N c¢K = L=K'M

by coinduction.



Arden’s Rule: L = K*M ?

Assume
L=KL+M AN e¢K

Is {(L, K*M)} abisimulation? Well. . .

La = (KL+ M)a
== KaL+ Ma
(K*M)a - KaK*M+ Ma

... almost: it is a bisimulation-up-to-congruence.
= {(UL+V,UK*M+ V)| U,V e 2% }is a bisimulation

= L= K*"M, by coinduction!



Arden’s Rule: L = K*M ?

Assume
L=KL+M AN e¢K

Is {(L, K*M) } abisimulation? Well . . .

La = (KL+ M)a
== KaL+ Ma
(K*M)a - KaK*M+ Ma

... almost: it is a bisimulation-up-to-congruence.
= {(UL+V,UK*M+ V)| U,V e 2% }is a bisimulation

= L= K*"M, by coinduction!

Exercise: check details in the paper.



Behavioural differential equations

X———— 2~
Oc
o{ .
XA- - — 5 (2A*)A
(OC)A

An aside: the above diagram can be viewed as a system of
behavioural differential equations
where the solution is given by finality.

Cf. streams and SDEs.
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6. Duality between equations and coequations
- defining classes of (non-pointed, non-coloured) automata

- words and languages become here tools



Our scene again
1 2
X C
€ \/ e?
0,

(A*)A,,,AXA,,,Q(QA*)A

Sets of equations: quotients of (A*, ¢, o)

Sets of coequations: subautomata of (24", 7, 7)



Equations and satisfaction

a set of equations = bisimulation equivalence E C A* x A*

(X.x,a) EE & Y(v,w)eE, xy=xw

(X,a) FE < Yx:1-=X, (X,x,a) FE



Equations: example

(Z,x,7) E {b=¢ ab=¢, aa= a}

Notation: we use
(i) v = winstead of (v, w)

(il) shorthand for the induced bisimulation equivalence



Equations: example

Zyn = (L AyDa

b

(Z,y,7) E {a=¢ ba=¢, bb= b}



Coequations and satisfaction

a set of coequations = a subautomaton D C 24"

(X,c,a)ED < ¥xeX, osx)eD

X,a) ED & Ve:X—=2, (X,c,a)ED



Coequations: example

a
en - (@I D
b

where c(x) =1, c(y) = 0.

b a
b

(Z.c,7) E {(ab)", (ab)"}



Coequations: example

o - p(EL @D

b
where d(x) =0, d(y) = 1
a
) -
b

(Z.d,7) = {(b'a)", (b a)"}



Duality of (co)equations, diagrammatically

C 2
Te?
X---sD-— -2~ < (Xca)ED

Oc



Duality of (co)equations, diagrammatically

S
X,a) = E &

M

I'x

Ve 2
Te?
X--_-sD---s2~ & (X,a)FD

Oc



A free and a cofree construction

1 VX Ve 2

| N~ _— 7 |

A* - — — sfree(X,a) - — > X< — s cofree(X,a) - - - » 2%

o U A A U

(A)A — free(X, a)? — XA — cofree(X, a)? — (247)A

free(X,a) represents largest set of equations

cofree(X, ) represents smallest set of coequations



A*ﬁHXj%XX A>i< f)fl’ee(x/ Oé)

where we define
free(X,a) = im(r) = A"/Eq(X,«a)

with
Eq(X,a) = ker(r)

Eq(X,«) = largest set of equations satisfied by (X, «)



cofree(X,a) = coEq(X, )

S

Tox X — 0 oA cofree(X, a) —2— 24"

where we define
cofree(X,a) = T X/ker(0)
and

coEq(X.,a) = image(o) = cofree(X,«)

coEq(X,«) = smallest set of coequations satisfied by (X, «)



Equations: example

(Z,x,7) E {b=¢,ab=¢, aa=a}
(Z,y,7) E {a=e¢, ba=¢, bb= b}

Taking the intersection gives

Eq(Z,v) = {aa=a, bb=b, ab= b, ba= a}

the largest set of equations satisfied by (Z, ).



Coequations: example

b
a,b b a
A a
CoEq(Z,v) =
ab b g a

This is the smallest set of coequations satisfied by (Z, ).



Summarizing

1 VX Ve 2

| NS, I

A" - - sfree(X,a) - - + X< - s cofree(X, a) - — + 24

1 VX Ye 2

| N s

A~ - 5 A" JEQ(X,a) - - > X = - 5 coEq(X, a) - - » 24

Eq(X,a) = largest set of equations
coEq(X,«) = smallest set of coequations



Recall: minimal automaton for a fixed L




Free and cofree of (L)

J \ |

A" — s free(L) (L) cofree(L) —— 24
Js?
2



The syntactic monoid of L

1 L
|
A —— free(L) (L) cofree(L) ——— 24"
JE?
I 2

free(L) = syn(L)



The syntactic monoid of L

L
]
|
A —— free(L) (L) cofree(L) ——— 24"
JE?
2
L

free(L) = syn(L)

Cf. algebraic language theory.



Theorem

L

]
EJ A
A SO free(L) (L) cofree(L) ——— 24"

E

2

< (v, w) € Myhill-Nerode congruence
& YueA,vuelswuel

< (v, w) € syntactic congruence

& Yu, b €AY, wwib € L& uywus € L
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7. A dual equivalence

- Between certain classes of equations and coequations.

- Itis an initial result about expressiveness.



A dual equivalence

Theorem:
cofree: C = PL :free
where C is the category of all congruence quotients
A*/C
and PL is the category of all preformations of languages:
sets V C 24" such that
(i) Vis a complete atomic Boolean subalgebra of 24"

(i) VLe2” LeV = L,eV and 4Le V
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8. In conclusion

Pointed and coloured automata (X, x,c,«) . . .

. . . are neither algebra nor coalgebra, but . . .



in part algebra (X, x,«) and . . .



in part coalgebra (X, c, «).



8. In conclusion

The algebra-coalgebra duality of automata leads to

initial algebra - final coalgebra semantics

inductive and coinductive proofs

duality of reachability - observability

duality of equations - coequations

duality of varieties - covarieties



