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Overview of todays lectures

Lecture one: The method of coalgebra

Lecture two: A coinductive calculus of streams

Lecture three: Automata and the algebra-coalgebra duality

Lecture four: Coalgebraic up-to techniques



Overview of Lecture one

1. Category theory (where coalgebra comes from)

2. Duality (where coalgebra comes from)

3. How coalgebra works (the method in slogans)

4. Duality: induction and coinduction

5. What coalgebra studies (its subject)

6. Discussion



1. Category theory
(where coalgebra comes from)



Why categories?

From Samson Abramsky’s tutorial:

Categories, why and how?

(Dagstuhl, January 2015)



Why categories?

For logicians: gives a syntax-independent view of the
fundamental structures of logic, opens up new kinds of models
and interpretations.

For philosophers: a fresh approach to structuralist foundations
of mathematics and science; an alternative to the traditional
focus on set theory.

For computer scientists: gives a precise handle on
abstraction, representation-independence, genericity and more.
Gives the fundamental mathematical structures underpinning
programming concepts.



Why categories?

For mathematicians: organizes your previous mathematical
experience in a new and powerful way, reveals new connections
and structure, allows you to “think bigger thoughts”.

For physicists: new ways of formulating physical theories in a
structural form. Recent applications to Quantum Information
and Computation.

For economists and game theorists: new tools, bringing
complex phenomena into the scope of formalisation.



Category Theory in 10 Slogans
1. Always ask: what are the types?

2. Think in terms of arrows rather than elements.

3. Ask what mathematical structures do, not what they are.

4. Categories as mathematical contexts.

5. Categories as mathematical structures.

6. Make definitions and constructions as general as possible.

7. Functoriality!

8. Naturality!

9. Universality!

10. Adjoints are everywhere.
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Categories: basic definitions

A category C consists of

- Objects A,B,C, . . .

- Morphisms/arrows: for each pair of objects A,B, a set of
morphisms C(A,B) with domain A and codomain B

- Composition of morphisms: g ◦ f :

A

g ◦ f

66
f // B

g
// C

- Axioms:

h ◦ (g ◦ f ) = (h ◦ g) ◦ f f ◦ id = f = id ◦ f
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Categories: examples

• Any kind of mathematical structure, together with structure
preserving functions, forms a category. E.g.

- sets and functions
- groups and group homomorphisms
- monoids and monoid homomorphisms
- vector spaces over a field k , and linear maps
- topological spaces and continuous functions
- partially ordered sets and monotone functions

• Monoids are one-object categories

• algebras, and algebra homomorphisms

• coalgebras, and coalgebra homomorphisms
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Arrows rather than elements
A function f : X → Y (between sets) is:

- injective if

∀x , y ∈ X , f (x) = f (y)⇒ x = y

- surjective if
∀y ∈ Y , ∃x ∈ X , f (x) = y

- monic if
∀g,h, f ◦ g = f ◦ h⇒ g = h

- epic if
∀g,h, g ◦ f = h ◦ f ⇒ g = h

Proposition

• m is injective iff m is monic.
• e is surjective iff e is epic.
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Arrows rather than elements
Defining the Cartesian product . . .

- with elements:

A× B = { 〈a,b〉 | a ∈ A, b ∈ B }

where
〈a,b〉 = {{a,b}, b}

- with arrows (expressing a universal property):

∀Cf

��

g

��

〈f ,g〉
��

A A× Bπ1
oo

π2
// B



Arrows rather than elements
Defining the Cartesian product . . .

- with elements:

A× B = { 〈a,b〉 | a ∈ A, b ∈ B }

where
〈a,b〉 = {{a,b}, b}

- with arrows (expressing a universal property):

∀Cf

��

g

��

〈f ,g〉
��

A A× Bπ1
oo

π2
// B



Arrows rather than elements
Defining the Cartesian product . . .

- with elements:

A× B = { 〈a,b〉 | a ∈ A, b ∈ B }

where
〈a,b〉 = {{a,b}, b}

- with arrows (expressing a universal property):

∀Cf

��

g

��

〈f ,g〉
��

A A× Bπ1
oo

π2
// B



2. Duality (where coalgebra comes from)

An additional slogan for categories: duality is omnipresent

- epi - mono

- product - sum

- initial object - final object

- algebra - coalgebra
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Duality: monos and epis

- f is monic:
∀g,h, f ◦ g = f ◦ h⇒ g = h

•
g

''

h
77 • f // •

- f is epic:
∀g,h, g ◦ f = h ◦ f ⇒ g = h

• •
h

gg

g
ww •foo

Proposition: f is monic in C iff f is epic in Cop.
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Duality: products and coproducts

The product of A and B:

∀Cf

��

g

��

〈f ,g〉
��

A A× Bπ1
oo

π2
// B

The coproduct of A and B:

∀C

A κ1
//

f
22

A + B

[f ,g]

OO

Bκ2
oo

gll

Proposition: O is product in C iff O is coproduct in Cop.
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Duality: initial and final objects

An object A in a category C is . . .

- initial if for any object B there exists a unique arrow

A ! // B

- final if for any object B there exists a unique arrow

B ! // A

Proposition: A is initial in C iff A is final in Cop.

Proposition: Initial and final objects are unique up-to
isomorphism.
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Where coalgebra comes from

By duality. From algebra!

Classically, algebras are sets with operations.

Ex. (N, 0, succ), with 0 ∈ N and succ : N→ N.

Equivalently,
1 + N

[zero, succ]
��

N

where 1 = {∗} and zero(∗) = 0.
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Algebra

Classically, algebras are sets with operations.

Ex.
Prog × Prog

α
��

Prog

with α(P1,P2) = P1; P2.



Algebra, categorically

F (X )

α
��

X

where F is the type of the algebra.



Coalgebra, dually

X

α
��

F (X )

where F is the type of the coalgebra.



Example: streams

Streams are our favourite example of a coalgebra:

Nω

〈head, tail〉
��

N× Nω

where

head(σ) = σ(0)

tail(σ) = (σ(1), σ(2), σ(3), . . .)

for any stream σ = (σ(0), σ(1), σ(2), . . .) ∈ Nω.



3. How coalgebra works (its method in slogans)

• be precise about types

• ask what a system does rather than what it is

• functoriality

• interaction through homomorphisms

• aim for universality

Note that all these slogans are part of the categorical approach.
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Starting point: the system’s type

A coalgebra of type F is a pair (X , α) with

α : X → F (X )

For instance, non-deterministic transition systems:

X

α
��

X

α
��

X

α
��

X

α
��

Pf (A×X ) Pf (X )A P(X )A 2× P(X )A

Formally, the type F of a coalgebra/system is a functor.



The importance of knowing the system’s type

The type F of a coalgebra/system

α : X → F (X )

determines

- a canonical notion of system equivalence: bisimulation

- a canonical notion of minimization

- a canonical interpretation: final coalgebra semantics

- (a canonical logic)



Doing versus being

Doing > Being

Behaviour > Construction

Systems as black boxes (with internal states)

Behavioural specification
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Example: the shuffle product of streams

Being:

(σ ⊗ τ) (n) =
n∑

k=0

(
n
k

)
· σ(k) · τ(n − k)

Doing:

σ ⊗ τ
σ(0) · τ(0)

// (σ′ ⊗ τ) + (σ ⊗ τ ′)
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Example: the Hamming numbers

Being:

The increasing stream h of all natural numbers that are divisible
by only 2, 3, or 5:

h = (1,2,3,4,5,6,8,9,10,12,15,16,18,20,24, . . . )

h(n) = ?

Doing:

h 1 // (2 · h) ‖ (3 · h) ‖ (5 · h)
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Homomorphisms

X

α
��

h // Y

β
��

F (X )
F (h)

// F (Y )

. . . are for systems/coalgebras what functions are for sets.

. . . are behaviour preserving functions.



Functoriality

X

α
��

h // Y

β
��

F (X )
F (h)

// F (Y )

Note that for the definition of homomorphism,

the type F needs to be a functor:

F acts on sets: F (X ), F (Y ) and on functions: F (h)



Example of a homomorphism

X

��

h // Y

��

O × X
id × h

// O × Y

x0 a
// x1 b

// x2 a
// x3

b
ww h // y0

a
88
y1

b
xx

Minimization through (canonical) homomorphism.



Universality

Always aim at universal/canonical formulations.

For instance: final coalgebras

In final coalgebras: Being = Doing

⇒ coinduction (to be discussed shortly)

⇒ semantics
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Semantics by finality: streams
The final homomorphism into the set of streams:

X

��

∃! h // Oω

��

O × X
id × h

// O ×Oω

maps any system X to its minimization: e.g.,

x0 a
// x1 b

// x2 a
// x3

b
ww h // (ab)ω

a
44
(ba)ω

b
tt

x0, x2
� h // (ab)ω x1, x3

� h // (ba)ω



4. Duality: induction and coinduction

- initial algebra - final coalgebra

- congruence - bisimulation

- induction - coinduction

- least fixed point - greatest fixed point



Initial algebra

The natural numbers are an example of an initial algebra:

1 + N

[zero, succ]
��

// 1 + S

β∀
��

N
∃ !

// S

Note: any two homomorphisms from N to S are equal.

Note: id : N→ N is a homomorphism.

Note: [zero, succ] : 1 + N ∼= N.
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Final coalgebra

Streams are an example of a final coalgebra:

S

β∀
��

∃ ! // Nω

〈head, tail〉
��

N× S // N× Nω

(Note: instead of N, we could have taken any set.)

Note: any two homomorphisms from S to Nω are equal.

Note: id : Nω → Nω is a homomorphism.

Note: 〈head, tail〉 : Nω ∼= N× Nω.
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Algebra and induction

Induction = definition and proof principle for algebras.

Ex. mathematical induction: for all P ⊆ N,

( P(0) and (∀n : P(n)⇒ P(succ(n))) ) ⇒ ∀n : P(n)

(Other examples: transfinite, well-founded, tree, structural, etc.)

We show that induction is a property of initial algebras.
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Algebras and congruences (ex. natural numbers)

We call R ⊆ N× N a congruence if

(i) (0,0) ∈ R and
(ii) (n,m) ∈ R ⇒ (succ(n), succ(m)) ∈ R

(Note: R is not required to be an equivalence relation.)

Equivalently, R ⊆ N× N is a congruence if

1 + N

[zero, succ]
��

1 + R

γ∃
��

oo // 1 + N

[zero, succ]
��

N Rπ1
oo

π2
// N

for some function γ : 1 + R → R.
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Initial algebras and congruences

Theorem: induction proof principle
Every congruence R ⊆ N× N contains the diagonal:

∆ ⊆ R

where ∆ = {(n,n) | n ∈ N}.

Proof: Because (N, [zero, succ]) is an initial algebra,

1 + N

[zero, succ]
��

++

1 + R

γ∃
��

oo // 1 + N

[zero, succ]
��

ss

N
!

)) Rπ1
oo

π2
// N

!
uu

we have π1◦! = id = π2◦!, which implies !(n) = (n,n), all n ∈ N.
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Initial algebras and induction

Theorem: The following are equivalent:

1. For every congruence relation R ⊆ N× N,

∆ ⊆ R

2. For every predicate P ⊆ N,

( P(0) and (∀n : P(n)⇒ P(succ(n))) ) ⇒ ∀n : P(n)

Proof: Exercise.

In other words: two equivalent formulations of induction!
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Coalgebra and coinduction

Coinduction = definition and proof principle for coalgebras.

Coinduction is dual to induction, in a very precise way.

Categorically, coinduction is a property of final coalgebras.

Algorithmically, coinduction generalises Robin Milner’s

bisimulation proof method.



Coalgebra and coinduction

Coinduction = definition and proof principle for coalgebras.

Coinduction is dual to induction, in a very precise way.

Categorically, coinduction is a property of final coalgebras.

Algorithmically, coinduction generalises Robin Milner’s

bisimulation proof method.



Coalgebra and coinduction

Coinduction = definition and proof principle for coalgebras.

Coinduction is dual to induction, in a very precise way.

Categorically, coinduction is a property of final coalgebras.

Algorithmically, coinduction generalises Robin Milner’s

bisimulation proof method.



Coalgebra and coinduction

Coinduction = definition and proof principle for coalgebras.

Coinduction is dual to induction, in a very precise way.

Categorically, coinduction is a property of final coalgebras.

Algorithmically, coinduction generalises Robin Milner’s

bisimulation proof method.



Coalgebras and bisimulations (ex. streams)

We call R ⊆ Nω × Nω a bisimulation if, for all (σ, τ) ∈ R,

(i) head(σ) = head(τ) and
(ii) (tail(σ), tail(τ)) ∈ R

Equivalently, R ⊆ Nω × Nω is a bisimulation if

Nω

〈head, tail〉
��

R
γ∃
��

π1oo
π2 // Nω

〈head, tail〉
��

N× Nω N× Roo // N× Nω

for some function γ : R → N× R.
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Final coalgebras and bisimulations

Theorem: coinduction proof principle
Every bisimulation R ⊆ Nω × Nω is contained in the diagonal:

R ⊆ ∆

where ∆ = {(σ, σ) | σ ∈ Nω}.

Proof: Because (Nω, 〈head, tail〉) is a final coalgebra,

Nω

〈head, tail〉
��

R
γ∃
��

π1oo
π2 // Nω

〈head, tail〉
��

N× Nω N× Roo // N× Nω

we have π1 = π2, which implies σ = τ , for all (σ, τ) ∈ Nω.
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Final coalgebras and coinduction

The following are equivalent:

1. For every bisimulation relation R ⊆ Nω × Nω,

R ⊆ ∆

2. ??

In other words: no obvious equivalent formulation of
coinduction!



Final coalgebras and coinduction

The following are equivalent:

1. For every bisimulation relation R ⊆ Nω × Nω,

R ⊆ ∆

2. ??

In other words: no obvious equivalent formulation of
coinduction!



Final coalgebras and coinduction

The following are equivalent:

1. For every bisimulation relation R ⊆ Nω × Nω,

R ⊆ ∆

2. ??

In other words: no obvious equivalent formulation of
coinduction!



Congruences and bisimulations: dual?

R ⊆ N× N is a congruence if

1 + N

[zero, succ]
��

1 + R

γ∃
��

oo // 1 + N

[zero, succ]
��

N Rπ1
oo

π2
// N
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��

R
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Congruences and bisimulations: dual?

R ⊆ S × T is an F -congruence if

F (S)

α
��

F (R)

γ∃
��

oo // F (T )

β
��

S Rπ1
oo

π2
// T

R ⊆ S × T is an F -bisimulation if

S

α
��

R

γ∃
��

π1oo
π2 // T

β
��

F (S) F (R)oo // F (T )



Induction and coinduction: dual?

For every congruence relation R ⊆ N× N,

∆ ⊆ R

For every bisimulation relation R ⊆ Nω × Nω,

R ⊆ ∆



Induction and coinduction: dual?

For every congruence relation R on an initial algebra:

∆ ⊆ R

For every bisimulation relation R on a final coalgebra:

R ⊆ ∆



An aside: fixed points

Let (P,≤) be a preorder and f : P → P a monotone map.

Classically, least fixed point induction is:

∀p ∈ P : f (p) ≤ p ⇒ µf ≤ p

Classically, greatest fixed point coinduction is:

∀p ∈ P : p ≤ f (p) ⇒ p ≤ νf
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An aside: fixed points

Any preorder (P,≤) is a category, with arrows:

p → q ≡ p ≤ q

Any monotone map is a functor:

p → q 7→ f (p)→ f (q)

Lfp induction and gfp coinduction become:

f (µf )

��

// f (p)

��

µf // p

p

��

// νf

��

f (p) // f (νf )
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Fixed point (co)induction = initiality and finality
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// f (p)
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µf // p

p

��
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f (p) // f (νf )

F (A)
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// F (S)
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A
∃ !

// S

S
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Fixed point (co)induction = initiality and finality
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5. What coalgebra studies

• the behaviour of – often infinite, circular – systems

(their equivalence, minimization, synthesis)

• rather: the universal principles underlying this behaviour

• these days applied in many different scientific disciplines
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Example: dynamical systems

A dynamical system is:

set of states X and a transition function t : X → X

Notation for transitions:

x → y ≡ t(x) = y

Examples:

x // y // z

��

poo r // s




q

@@



Example: systems with output

A system with output:

〈o, t〉 : X → O × X

Notation: x a // y ≡ o(x) = a and t(x) = y .

x0 a
// x1 b

// x2 a
// x3

b
ww

y0

a
88
y1

b
xx



Example: infinite data types

For instance, streams of natural numbers:

Nω = {σ | σ : N→ N }

The behaviour of streams:

(σ(0), σ(1), σ(2), . . .)
σ(0)

// (σ(1), σ(2), σ(3), . . .)

where we call

σ(0): the initial value (= head)

σ′ = (σ(1), σ(2), σ(3), . . .): the derivative (= tail)



Example: streams

(1,1,1, . . .) 1 // (1,1,1, . . .) 1 // (1,1,1, . . .) 1 // · · ·

(1,1,1, . . .)

1
��
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Example: streams
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Example: non-well-founded sets

Historically important: Peter Aczel’s book.

x = {x} y = {y}

x,, y rr

x = {y} y = {z} z = {x , y}

x // y // z
yy

``
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Example: automata

A deterministic automaton

// x

b
��

a
// z

b
zz

a
}}

y

b

OO

a

JJ

• initial state: x • final states: y and z

• L(x) = {a,b}∗ a
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All these examples: circular behaviour

// x

b
��

a
// z

b
zz

a
}}

y

b

OO

a

JJ

y0

a
88
y1

b
xx

(1,2,3, . . .) 1 //

1
��

(1,1,1, . . .)
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Where coalgebra is used

• logic, set theory
• automata
• control theory
• data types
• dynamical systems
• games
• economy
• ecology



6. Discussion

• New way of thinking – give it time

• Extensive example: streams (Lecture two)

• Algebra and coalgebra (Lecture three and four)

- bisimulation up-to
- cf. CALCO

• Algorithms, tools (Lecture four)

- Cf. Hacking nondeterminism with induction and coinduction
Bonchi and Pous, Comm. ACM Vol. 58(2), 2015


