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1. Bisimulation up-to

- Deterministic automata

Nondeterministic automata

Weighted automata

Streams
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e A relation R is a bisimulation if x R y entails

e o(x) = o(y);
o for all a, t,(x) R ta(y).

o Theorem: L(x) = L(y) iff
there exists a bisimulation R with x R y

The previous algorithm attempts to construct a bisimulation
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Checking language equivalence

One can stop much earlier

[Hopcroft and Karp '71]
Complexity: almost linear [Tarjan '75]
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Correctness of the improvement

Correctness of HK algorithm, revisited:

e Denote by R€ the equivalence closure of R
e R is a bisimulation up to equivalence if x R y entails

e o(x) = o(y);
o for all a, t5(x) R® ti(y).

e Theorem: L(x) = L(y) iff
there exists a bisimulation up to equivalence R, with x R y

Ten years before Milner and Park!
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Non-Deterministic Automata

One can do even better:

?C?%z x+y = u+ty (1)
= y+z+y (2)
= y+z

using bisimulations up to congruence.



Bonchi and Pous: HKC algorithm

Cf. Hacking nondeterminism with induction and coinduction.
Filippo Bonchi and Damien Pous.

Communications of the ACM 58(2), 2015.

(Also in: Proceedings of POPL 2013.)

A combination of Hopcroft and Karp's algorithm (which is already
up-to-equivalence) and the use of bisimulations up to context,
yielding:

HKC algorithm: Hopcroft and Karp up to Congruence



Other classes of examples: weighted automata

X3¢0/D a,b,1 y3w/D a,b,1

b,1 b1
1

b,3 b1
a,l 1 a,% 1
X000 = X1¢Q a3 Yojo—~ )/1¢1/D a3

1
a,b,5 a,%
a’

1
2
XQLQ a,b,1 yle a,b,1



Other classes of examples: weighted automata

X3J’O/D a,b,1 y3‘LO/D a,b,1

b,1 b,1
b3 b,1
a,1l 1 37% 1
X000 = X1¢1/D a3 Yojo—= }/1¢Q a3
a,b,% a,%
a3

X2¢Q ab1

e Any bisimulation relating xp and yp is infinite:

a a 1 1 a1 a
X0 X1 §x1—|—§x2—>zx1—|—%x2—>...

YO$%Y1+%Y2$%}/1+%Y2$%Y1+%Y2$---



Other classes of examples: weighted automata

X3¢(Q ab1 wa abl

b,1 b,1
1

b,3 b,1
a,l 1 a,% 1
X000~ X1¢Q a2 Yoo —~ )/1¢1/D a3

1
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1
2
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e Any bisimulation relating xp and yp is infinite:

e They are related by a finite
bisimulation up to linear combinations:

{(x0:¥0), (x1,2y1+ 3y2), (x2.¥2), (x3,¥3)}
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Lessons learned from the examples

e A wide range of up-to techniques
up to equivalence

up to bisimilarity

up to union

up to linear combinations

up to context

e For different kind of systems
o {deterministic,non-deterministic,weighted} automata,
e streams
e process algebra [Milner'89, Sangiorgi'98]

e Sometimes they need to be combined together

e union and equivalence ~»  congruence (NFA)
e cand R— ~R~ ~ R — ~c(R)~ (streams)



2. General theory: using lattices and fixed points



Abstract coinduction

Let b be a monotone function on a complete lattice
e a b-simulation is an element x such that x C b(x)

e b-similarity is the greatest b-simulation:
gfp(b) = Uix | x € b(x)}

(For deterministic automata, one choses

b(R) = {(x,y) | o(x) = o(y) A Va, ta(x) R ta(y)}

so that b-simulations are precisely the bisimulations, and one
proves that gfp(b) is just language equivalence)



Abstract up-to techniques

Let f be another monotone function
e a b-simulation f is an element x such that x C b(7(x))

e f is b-sound if all b-simulations up to f are contained in
b-similarity

(Candidates for f: R+ ~R~, equivalence closure, context
closure, congruence closure . ..)

Unfortunately, b-sound functions cannot be freely composed!



Compatible functions [P.'07, P.&Sangiorgi'12]
Definition: f is b if fobC bof
Theorem: b-compatible functions are b-sound
Proposition: b-compatible functions can be freely composed

Lemma: in the lattice of relations, R — ~R~ and equivalence
closure are b-compatible, provided that

VRS, b(R) - b(5) C b(R-S) (1)



3. General theory: combining algebra and coalgebra



Coalgebra

Coalgebra make it possible to encompass the previous examples in
a uniform setting:

systems | functor (F)
deterministic automata 2x A
non-deterministic automata | 2 x P¢(—)"
weigthed automata R x (R™)A
streams R x —

Semantics is defined through the final coalgebra:

[1

X ——Q

|

FX —>FQ

So is behavioural equivalence: x ~, v = [x] = [v]



Coalgebraic bisimulation

Given an F-coalgebra (X, «), define the following function on
binary relations:

ba(R) = {(x,y) | 3z € FR, F(nf) = a(x), F(x§) = a(y)}

Theorem [Rutten’98, Hermina&Jacobs'98]: ~, = gfp(ba)

e one can use abstract coinduction directly



Coalgebraic bisimulation

Given an F-coalgebra (X, «), define the following function on
binary relations:

ba(R) = {(x,y) | 3z € FR, F(nf) = a(x), F(x§) = a(y)}

Theorem [Rutten’98, Hermina&Jacobs'98]: ~, = gfp(ba)

e one can use abstract coinduction directly

Proposition [Rot, Bonchi, Bonsangue, P., Rutten, Silva'13]:
b, satisfies (1) iff F preserves weak pullbacks
(1) VRS, b(R) - b(5) € b(R - 5)

e up to equivalence (almost) always comes for free



Contexts: bialgebras

What about the
up to union/linear combinations/context techniques?

e They are all instances of the same framework.
We just exploit some algebraic structure of the state-space:

e a semilattice for non-deterministic automata
e a vector space for weighted automata
e a syntax for streams

e Can be captured using A-bialgebras:
A TF=FT

TX o X —- FX
(xof=FBolxoTa)

[Turi&Plotkin'97, Bartels'04, Klin'11]



Up to context in bialgebras

In the T-algebra (X, ), the context closure of a relation can be
defined as:

cs(R) = (Bo Trl, 8o Trk)

Proposition [Rot, Bonchi, Bonsangue, P., Rutten, Silva'13]:
cg is bo-compatible whenever (X, a, 3) is a A-bialgebra.

Corollary [Turi&Plotkin'97, Bartels'04]: In all A-bialgebras,
behavioural equivalence is a congruence.

Corollary: Up to congruence is sound in all A-bialgebras if F
preserves weak pullbacks.



4. In conclusion
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Summary

Combining algebra and coalgebra makes it possible

e to exploit the abstract theory of up-to techniques for a wide
range of systems
e to design algorithms in a uniform way
(e.g., HKC for must-testing [Bonchi, Caltais, P., Silva'13])



Open question

How to handle (up-to techniques for) weak bisimilarity
coalgebraically?



