Lecture four:

Coalgebraic up-to techniques

Jan Rutten

CWI Amsterdam & Radboud University Nijmegen

IPM, Tehran - 13 January 2016

Context

Combining algebra and coalgebra together yields ...

Context

Combining algebra and coalgebra together yields . ..

. a set of very efficient tools and proof techniques for proving
the equivalence of various types of systems (such as automata,
streams, etc.).

Context

Combining algebra and coalgebra together yields ...

. a set of very efficient tools and proof techniques for proving
the equivalence of various types of systems (such as automata,
streams, etc.).

Cf. Hacking nondeterminism with induction and coinduction.
Filippo Bonchi and Damien Pous.

Communications of the ACM 58(2), 2015.

(Also in: Proceedings of POPL 2013.)

Context
Combining algebra and coalgebra together yields ...

. a set of very efficient tools and proof techniques for proving
the equivalence of various types of systems (such as automata,
streams, etc.).

Cf. Hacking nondeterminism with induction and coinduction.
Filippo Bonchi and Damien Pous.

Communications of the ACM 58(2), 2015.

(Also in: Proceedings of POPL 2013.)

Acknowledgement: most of these slides are taken from the
presentation of Damien Pous at CALCO 2013.

N

Table of contents

. Bisimulation up-to
. General theory: using lattices and fixed points
. General theory: combining algebra and coalgebra

. In conclusion

1. Bisimulation up-to

- Deterministic automata

Nondeterministic automata

Weighted automata

Streams

Deterministic finite automata

The following automata are equivalent:

Deterministic finite automata

The following automata are equivalent:

Deterministic finite automata

The following automata are equivalent:

Deterministic finite automata

The following automata are equivalent:

Deterministic finite automata

The following automata are equivalent:

X——>Yy z
!
!
!
!
!
!
v

)

Deterministic finite automata

The following automata are equivalent:

Deterministic finite automata

These two automata are not equivalent:

Deterministic finite automata

These two automata are not equivalent:

v v
<I ©
v

- — — - — —X

<|

Deterministic finite automata

These two automata are not equivalent:

a
/\a

x
- - - - - -
N

Deterministic finite automata

These two automata are not equivalent:

a
a/_\a
X 1% z

|
|
[
I
|
a /
— T —
u % /
= /

Deterministic finite automata

These two automata are not equivalent:

Deterministic finite automata

These two automata are not equivalent:

Deterministic finite automata

Another example, with two letters:

Deterministic finite automata

Another example, with two letters:

Deterministic finite automata

Another example, with two letters:

Deterministic finite automata

Another example, with two letters:

Deterministic finite automata

Another example, with two letters:

a,b _ a,b _
y Q a,b

Deterministic finite automata

Another example, with two letters:

Deterministic finite automata

Another example, with two letters:

Deterministic finite automata

Another example, with two letters:

Correctness

e A relation R is a bisimulation if x R y entails

e o(x) = o(y);
o for all a, t,(x) R ta(y).

Correctness

e A relation R is a bisimulation if x R y entails

e o(x) = o(y);
o for all a, t,(x) R ta(y).

o Theorem: L(x) = L(y) iff
there exists a bisimulation R with x R y

Correctness

e A relation R is a bisimulation if x R y entails

e o(x) = o(y);
o for all a, t,(x) R ta(y).

o Theorem: L(x) = L(y) iff
there exists a bisimulation R with x R y

The previous algorithm attempts to construct a bisimulation

Checking language equivalence

Deterministic case, naive algorithm: quadratic complexity

Checking language equivalence

Deterministic case, naive algorithm: quadratic complexity

1 pairs

Checking language equivalence

Deterministic case, naive algorithm: quadratic complexity

2 pairs

Checking language equivalence

Deterministic case, naive algorithm: quadratic complexity

3 pairs

Checking language equivalence

Deterministic case, naive algorithm: quadratic complexity

4 pairs

Checking language equivalence

Deterministic case, naive algorithm: quadratic complexity

5 pairs

Checking language equivalence

Deterministic case, naive algorithm: quadratic complexity

6 pairs

Checking language equivalence

Deterministic case, naive algorithm: quadratic complexity

7 pairs

Checking language equivalence

Deterministic case, naive algorithm: quadratic complexity

8 pairs

Checking language equivalence

Deterministic case, naive algorithm: quadratic complexity

9 pairs

Checking language equivalence

Deterministic case, naive algorithm: quadratic complexity

10 pairs

Checking language equivalence

Deterministic case, naive algorithm: quadratic complexity

11 pairs

Checking language equivalence

Deterministic case, naive algorithm: quadratic complexity

12 pairs

Checking language equivalence

Deterministic case, naive algorithm: quadratic complexity

13 pairs

Checking language equivalence

Deterministic case, naive algorithm: quadratic complexity

14 pairs

Checking language equivalence

Deterministic case, naive algorithm: quadratic complexity

15 pairs

Checking language equivalence

Deterministic case, naive algorithm: quadratic complexity

16 pairs

Checking language equivalence

Deterministic case, naive algorithm: quadratic complexity

17 pairs

Checking language equivalence

Deterministic case, naive algorithm: quadratic complexity

18 pairs

Checking language equivalence

Deterministic case, naive algorithm: quadratic complexity

_/

19 pairs

Checking language equivalence

Deterministic case, naive algorithm: quadratic complexity

20 pairs

Checking language equivalence

Deterministic case, naive algorithm: quadratic complexity

20 pairs

Checking language equivalence

Deterministic case, naive algorithm: quadratic complexity

20 pairs

Checking language equivalence

One can stop much earlier

20 8 pairs

Checking language equivalence

One can stop much earlier

[Hopcroft and Karp '71]
Complexity: almost linear [Tarjan '75]

Correctness of the improvement

Correctness of HK algorithm, revisited:

e Denote by R€ the equivalence closure of R
e R is a bisimulation up to equivalence if x R y entails

e o(x) = o(y);
o for all a, t5(x) R® ti(y).

Correctness of the improvement

Correctness of HK algorithm, revisited:

e Denote by R€ the equivalence closure of R
e R is a bisimulation up to equivalence if x R y entails

e o(x) = o(y);
o for all a, t5(x) R® ti(y).

e Theorem: L(x) = L(y) iff
there exists a bisimulation up to equivalence R, with x R y

Correctness of the improvement

Correctness of HK algorithm, revisited:

e Denote by R€ the equivalence closure of R
e R is a bisimulation up to equivalence if x R y entails

e o(x) = o(y);
o for all a, t5(x) R® ti(y).

e Theorem: L(x) = L(y) iff
there exists a bisimulation up to equivalence R, with x R y

Ten years before Milner and Park!

Non-Deterministic Automata

Use Hopcroft and Karp on the fly, through the powerset
construction:

Non-Deterministic Automata

Use Hopcroft and Karp on the fly, through the powerset

construction:

Non-Deterministic Automata

Use Hopcroft and Karp on the fly, through the powerset

construction:

u——v+w

Non-Deterministic Automata

Use Hopcroft and Karp on the fly, through the powerset

construction:

Non-Deterministic Automata

Use Hopcroft and Karp on the fly, through the powerset

construction:

X+y

u—— v+w —— u+w —— u+v+w

Non-Deterministic Automata

Use Hopcroft and Karp on the fly, through the powerset

construction:

X+y y+z

u—— v+w —— u+w —— u+v+w

Non-Deterministic Automata

Use Hopcroft and Karp on the fly, through the powerset

construction:

=
-
\
‘A_\i
U\/W%V
Xy Viz—~xiyiz

—
—
—
—
—
—
—

u—— v+w —— u+w —— u+v+w

Non-Deterministic Automata

Use Hopcroft and Karp on the fly, through the powerset
construction:

X y z x+y y+z——x+ty+z

/U

Uu——>v+w —— u+w —— u+v+w

Non-Deterministic Automata

Use Hopcroft and Karp on the fly, through the powerset
construction:

X y z x+y y+z——x+ty+z

/U

Uu——>v+w —— u+w —— u+v+w

Non-Deterministic Automata

One can do better:

[

| ()
[

u——v+w — u+w —— u+v+w O

X y z X+y y+zZ ——X+y+z

Non-Deterministic Automata

One can do better:

X<=——2z__ Yy (x, u)
+ (v, vtw)
= (xty, utvtw)
= T _
u W=<——-YV
~_

[

| ()
[

uy——v+w — u+w —— ut+v+w O

X y z X+y y+zZ ——X+y+z

Non-Deterministic Automata

One can do better:

X<—"2z2__ Y (X’ u)
+ (v, vitw)
— = Loty whviw)
u wW=<——-YV
~—

|,

X y z X+y Y+z ——x+y+z
‘

uy——v+w — u+w —— ut+v+w O

using bisimulations up to union

Non-Deterministic Automata

One can do even better:

y+z x+y x+y+z

Non-Deterministic Automata

One can do even better:

u+y (1)
y+z+y (2)
y+z

Non-Deterministic Automata

One can do even better:

u+y (1)
y+z+y (2)
y+z

Non-Deterministic Automata

One can do even better:

?C?%z x+y = u+ty (1)
= y+z+y (2)
= y+z

using bisimulations up to congruence.

Bonchi and Pous: HKC algorithm

Cf. Hacking nondeterminism with induction and coinduction.
Filippo Bonchi and Damien Pous.

Communications of the ACM 58(2), 2015.

(Also in: Proceedings of POPL 2013.)

A combination of Hopcroft and Karp's algorithm (which is already
up-to-equivalence) and the use of bisimulations up to context,
yielding:

HKC algorithm: Hopcroft and Karp up to Congruence

Other classes of examples: weighted automata

X3¢0/D a,b,1 y3w/D a,b,1

b,1 b1
1

b,3 b1
a,l 1 a,% 1
X000 = X1¢Q a3 Yojo—~)/1¢1/D a3

1
a,b,5 a,%
a’

1
2
XQLQ a,b,1 yle a,b,1

Other classes of examples: weighted automata

X3J’O/D a,b,1 y3‘LO/D a,b,1

b,1 b,1
b3 b,1
a,1l 1 37% 1
X000 = X1¢1/D a3 Yojo—= }/1¢Q a3
a,b,% a,%
a3

X2¢Q ab1

e Any bisimulation relating xp and yp is infinite:

a a 1 1 a1 a
X0 X1 §x1—|—§x2—>zx1—|—%x2—>...

YO$%Y1+%Y2$%}/1+%Y2$%Y1+%Y2$---

Other classes of examples: weighted automata

X3¢(Q ab1 wa abl

b,1 b,1
1

b,3 b,1
a,l 1 a,% 1
X000~ X1¢Q a2 Yoo —~)/1¢1/D a3

1
a,b,5 37%
a7

1
2
Xng a,b,1 y%Q a,b,1

e Any bisimulation relating xp and yp is infinite:

e They are related by a finite
bisimulation up to linear combinations:

{(x0:¥0), (x1,2y1+ 3y2), (x2.¥2), (x3,¥3)}

Coinductive stream calculus [Rutten’'03]

Streams can be defined by behavioural differential equations:

(c+7) =0 +7 o(c+7)=o0(c)+o(r) (sum)
(c@7) =("®T)+ (0 @7) olc®@T)=o0(c)xo(r) (shuffle)
(e =-d@@0 st o(c™!) = (J) (inverse)
(i) = o(i) = (numbers)

A bisimulation is a relation R such that o R 7 entails o(c) = o(7)
and o' R 7/

e Let usshow thato +0~ 0o

Coinductive stream calculus [Rutten’'03]

Streams can be defined by behavioural differential equations:

(c+7) =0 +7 o(c +7)=o0(c)+ o) (sum)
(cx7) =>0&7)+ (cr @7) olc®@T)=o0(c)xo(r) (shuffle)
(e =@ ol o(c™) = o(o0)™? (inverse)
(Y = o(i)=1i (numbers)

A bisimulation is a relation R such that o R 7 entails o(c) = o(7)
and o' R 7/

e Let usshow thato +0~ 0o

e How about c ® 1 ~ ¢?

Coinductive stream calculus [Rutten’'03]

Streams can be defined by behavioural differential equations:

(c+7) =0 +7 o(c +7)=o0(c)+ o) (sum)
(cx7) =>0&7)+ (cr @7) olc®@T)=o0(c)xo(r) (shuffle)
(e =@ ol o(c™) = o(o0)™? (inverse)
(Y = o(i)=1i (numbers)

A bisimulation up to ~ and is a relation R such that ¢ R 7 entails
o(c) =o(r) and o/ ~R~ 7’

e Let usshow thato +0~ 0o
e How about c ® 1 ~ ¢?
e Ando®@o 1~ 17

Coinductive stream calculus [Rutten’'03]

Streams can be defined by behavioural differential equations:

(c+7) =0 +7 o(c+7)=o0(c)+o(r) (sum)
(c@7) =("®T)+ (0 @7) olc®@T)=o0(c)xo(r) (shuffle)
(e =-d@@0 st o(c™!) = (J) (inverse)
(i) = o(i) = (numbers)

A bisimulation up to ~ and up to context is a relation R such that
o R 7 entails o(0) = o(7) and ¢’ ~c(R)~ 7’

e Let usshow thato +0~ o
e How about c ® 1 ~ ¢?
e Ando®@o 1~ 17

Lessons learned from the examples

e A wide range of up-to techniques
up to equivalence

up to bisimilarity

up to union

up to linear combinations

up to context

e For different kind of systems
o {deterministic,non-deterministic,weighted} automata,
e streams
e process algebra [Milner'89, Sangiorgi'98]

e Sometimes they need to be combined together

e union and equivalence ~» congruence (NFA)
e cand R— ~R~ ~ R — ~c(R)~ (streams)

2. General theory: using lattices and fixed points

Abstract coinduction

Let b be a monotone function on a complete lattice
e a b-simulation is an element x such that x C b(x)

e b-similarity is the greatest b-simulation:
gfp(b) = Uix | x € b(x)}

(For deterministic automata, one choses

b(R) = {(x,y) | o(x) = o(y) A Va, ta(x) R ta(y)}

so that b-simulations are precisely the bisimulations, and one
proves that gfp(b) is just language equivalence)

Abstract up-to techniques

Let f be another monotone function
e a b-simulation f is an element x such that x C b(7(x))

e f is b-sound if all b-simulations up to f are contained in
b-similarity

(Candidates for f: R+ ~R~, equivalence closure, context
closure, congruence closure . ..)

Unfortunately, b-sound functions cannot be freely composed!

Compatible functions [P.'07, P.&Sangiorgi'12]
Definition: f is b if fobC bof
Theorem: b-compatible functions are b-sound
Proposition: b-compatible functions can be freely composed

Lemma: in the lattice of relations, R — ~R~ and equivalence
closure are b-compatible, provided that

VRS, b(R) - b(5) C b(R-S) (1)

3. General theory: combining algebra and coalgebra

Coalgebra

Coalgebra make it possible to encompass the previous examples in
a uniform setting:

systems | functor (F)
deterministic automata 2x A
non-deterministic automata | 2 x P¢(—)"
weigthed automata R x (R™)A
streams R x —

Semantics is defined through the final coalgebra:

[1

X ——Q

|

FX —>FQ

So is behavioural equivalence: x ~, v = [x] = [v]

Coalgebraic bisimulation

Given an F-coalgebra (X, «), define the following function on
binary relations:

ba(R) = {(x,y) | 3z € FR, F(nf) = a(x), F(x§) = a(y)}

Theorem [Rutten’98, Hermina&Jacobs'98]: ~, = gfp(ba)

e one can use abstract coinduction directly

Coalgebraic bisimulation

Given an F-coalgebra (X, «), define the following function on
binary relations:

ba(R) = {(x,y) | 3z € FR, F(nf) = a(x), F(x§) = a(y)}

Theorem [Rutten’98, Hermina&Jacobs'98]: ~, = gfp(ba)

e one can use abstract coinduction directly

Proposition [Rot, Bonchi, Bonsangue, P., Rutten, Silva'13]:
b, satisfies (1) iff F preserves weak pullbacks
(1) VRS, b(R) - b(5) € b(R - 5)

e up to equivalence (almost) always comes for free

Contexts: bialgebras

What about the
up to union/linear combinations/context techniques?

e They are all instances of the same framework.
We just exploit some algebraic structure of the state-space:

e a semilattice for non-deterministic automata
e a vector space for weighted automata
e a syntax for streams

e Can be captured using A-bialgebras:
A TF=FT

TX o X —- FX
(xof=FBolxoTa)

[Turi&Plotkin'97, Bartels'04, Klin'11]

Up to context in bialgebras

In the T-algebra (X,), the context closure of a relation can be
defined as:

cs(R) = (Bo Trl, 8o Trk)

Proposition [Rot, Bonchi, Bonsangue, P., Rutten, Silva'13]:
cg is bo-compatible whenever (X, a, 3) is a A-bialgebra.

Corollary [Turi&Plotkin'97, Bartels'04]: In all A-bialgebras,
behavioural equivalence is a congruence.

Corollary: Up to congruence is sound in all A-bialgebras if F
preserves weak pullbacks.

4. In conclusion

«or Fr o«

Q>

Summary

Combining algebra and coalgebra makes it possible

e to exploit the abstract theory of up-to techniques for a wide
range of systems
e to design algorithms in a uniform way
(e.g., HKC for must-testing [Bonchi, Caltais, P., Silva'13])

Open question

How to handle (up-to techniques for) weak bisimilarity
coalgebraically?

