
P1: ILT
ACMJ266-07 ACM-TRANSACTION April 10, 2007 5:17

Low Test Application Time Resource Binding
for Behavioral Synthesis

MOHAMMAD HOSSEINABADY, PEJMAN LOTFI-KAMRAN,
and ZAINALABEDIN NAVABI
University of Tehran

Recent advances in process technology have led to a rapid increase in the density of integrated
circuits (ICs). Increased density and the need to test for new types of defects in nanometer tech-
nologies have resulted in a tremendous increase in test application time (TAT). This article presents
a test synthesis method to reduce test application time for testing the datapath of a design. The
test application time is reduced by applying a test-time-aware resource sharing algorithm on a
scheduled control data flow graph (CDFG) of a design.

Categories and Subject Descriptors: B.5.3 [Register-Transfer-Level Implementation]: Reliabil-
ity and Testing—Testability; test generation; B.5.1 [Register-Transfer-Level Implementation]:
Design—Data-path design

General Terms: Design, Reliability

Additional Key Words and Phrases: Testability, test synthesis, CDFG, high-level synthesis

ACM Reference Format:
Hosseinabady, M., Lotfi-Kamran, P., and Navabi, Z. 2007. Low test application time resource bind-
ing for behavioral synthesis. ACM Trans. Des. Autom. Electron. Syst. 12, 2, Article 16 (April 2007),
22 pages. DOI = 10.1145/1230800.1230808 http://10.1145/1230800.1230808.

1. INTRODUCTION

Recent advances in process technology have led to a rapid increase in the density
of integrated circuits (ICs). This increased density and the need to test for
new types of defects in nanometer technologies have resulted in a tremendous
increase in test generation time (TGT) and test application time (TAT).

To ease the complexity of test generation, design-for-testability (DFT) tech-
niques have been proposed. The most commonly used DFT techniques for VLSI

This research was supported by the Nanotechnology-Center of Excellence, University of Tehran,
Iran.
Authors’ addresses: M. Hosseinabady (contact author), P. Lotfi-Kamran, and Z. Navabi, Electrical
and Computer Engineering Faculty, University of Tehran, 14399 Tehran, Iran; email: mohammad@
cad.ece.ut.ac.ir.
Permission to make digital or hard copies part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C⃝ 2007 ACM 1230800/2007/04-ART16 $5.00 DOI 10.1145/1230800.1230808 http://doi.acm.org/
10.1145/1230800.1230808

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 16, Publication date: April 2007.

P1: ILT
ACMJ266-07 ACM-TRANSACTION April 10, 2007 5:17

2 • M. Hosseinabady et al.

circuits – particularly applicable to sequential circuits – utilize a scan chain.
These techniques rely on modifying a circuit such that automatic test pattern
generation (ATPG) tools can achieve a high fault coverage. Scan-based tech-
niques have the disadvantage that the test application time is very large com-
pared to that of nonscan designs.

A top-down design methodology that has increasingly been adopted for syn-
thesis offers an alternative approach to ease test generation and to reduce test
application time. In addition, high-level definitions of a circuit (e.g., behavioral-
level or register-transfer-level (RTL)) have significantly reduced the number of
primitives (as a measure of complexity) compared to that of a gate-level repre-
sentation. Consequently, if test generation and testability enhancement can be
performed at RT- or behavioral level, the test problem may be more tractable.
Considering test application time during high-level synthesis not only provides
an edge for testability-related optimizations, but also enhances the scope of crit-
ical timing path analysis. Towards this direction, test application time analysis
information constitutes a precious resource for innovative high-level synthesis
solutions.

The behavioral description of a circuit is usually provided using a hardware
description language like VHDL. This description is compiled into a control
data flow graph (CDFG), which is a directed graph with operation vertices,
data-variable arcs, conditions, and loops. The CDFG can be used for extracting
control and data information during synthesis.

There are two parameters that affect test application time: the number of
test vectors and the number of clocks that are needed to apply a test vector to
the design. Note that increasing the testability (i.e., controllability and observ-
ability) of different parts of a design makes the design more easily testable,
and consequently decreases the number of test vectors. On the other hand, de-
creasing the depth of a circuit during test decreases the number of clocks that
is needed to apply a test vector to the design.

1.1 Previous Work

There are many works in the literature that propose methodologies for test
synthesis and DFT methods to increase the testability of a design.

Makris et al. [2001] introduce a methodology for identifying the transparency
behavior to be used in a hierarchical test scheme. Using the transparency
scheme, Makris et al. [2002] propose a hierarchical test generation method
for DFT-free controller-datapath design. In addition, introducing the concept
of an influence table, they translate the controller of a design to several ta-
bles by which the interactions among datapath variables for each state of the
controller are captured. These tables are used to find a valid test path in the
datapath.

These works primarily examine the existing datapath and controller of a
design to find test justification and propagation paths and to translate the
locally generated test vectors at module (of the datapath) boundaries to global
design tests. These works result in reducing test generation time. Although
test generation time is an important factor impacting on the time-to-market

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 16, Publication date: April 2007.

P1: ILT
ACMJ266-07 ACM-TRANSACTION April 10, 2007 5:17

Low Test Time Binding in Behavioral Synthesis • 3

of a design, test application time is more determinative of the total test cost
(i.e., consumed power, ATE cost, time-to-market). Adding only a very low area
overhead DFT hardware to the datapath and controller, our work will find the
test paths in the datapath such that the total test application time will be
reduced.

Bhatia and Jha [1994] propose a behavioral synthesis technique that guar-
antees high and easy testability of data paths, even in the presence of loop
constructs in the behavioral description. Given a test set for each module, the
aim of their behavioral synthesis system, called Genesis, is to make it possi-
ble to obtain a system-level test set with 100% test coverage of each embedded
module. To examine the testability of a design, they define three testability mea-
sures, called controllability, observability, and verifiability, for different nodes
in the DFG (data flow graph) of the design. Based on the obtained testability
parameters, if it is not possible to identify a test environment for any of the
operators mapped to a module, they add a multiplexer, map testable operators
to the untestable module, and modify the register allocation or unroll the DFG
to handle loops in the DFG. Whereas these techniques increase the testability
of modules in an RTL design, they do not change the test environment for a
testable module. Not only do we increase the testability of an RTL module in
a design using a few low-overhead DFT techniques, but also we try to mini-
mize the number of clocks needed to test a module, even that module which
is testable in the original CDFG. For this purpose, adding extra transitions
in the controller of the design, we bypass the extra clocks in justification and
propagation paths during test.

Inoue et al. [2003] propose a test synthesis method for RT-level designs. In
this scheme, to increase the testability of a design, the augmented RTL struc-
ture of the design is generated. An augmented RTL structure is a strongly
testable datapath and controller structure capable of providing test plans for
each module. Controller modification is performed by adding transitions, states,
and primary inputs. For the datapath, a hold function is added to the registers,
while a thru function is added to the modules. This method generates control
sequences for justification and propagation at the register-transfer level using
the existing RTL design. This reference considers only the increasing testa-
bility of a design and does not address the number of clocks needed to apply
test vectors to the design. In addition, to realize the strong testability, they
added multiplexers, mask elements (a few controllable gates), and registers to
the existing datapath. The extra hardware may have a timing penalty on the
normal operation of the circuit, whereas in large designs in which the added
DFT can have a timing penalty and large area overhead, the conditions for
test justification and propagation (called strong testability) can be achieved by
altering resource binding and allocation in the early design stage (i.e., during
the synthesis algorithm).

1.2 Contribution and Overview of the Proposed Method

This article addresses both of the mentioned parameters (i.e., the number of test
vectors and number of test clocks) simultaneously. For increasing the testability

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 16, Publication date: April 2007.

P1: ILT
ACMJ266-07 ACM-TRANSACTION April 10, 2007 5:17

4 • M. Hosseinabady et al.

Fig. 1. Overview of our synthesis algorithm.

of modules in an RTL design, we first impose a transparency that takes ad-
vantage of the functionality of RTL modules, which is called functional trans-
parency. Then, we change the controller so that each module can be more easily
reachable. In addition, a heuristic resource binding algorithm as a part of the
test synthesis method is proposed to decrease the number of clocks needed to
test a module under test in the design.

Figure 1 shows different parts of the proposed methodology. Based on this
figure, the proposed test synthesis methodology has three main portions: new
high-level test concepts based on the CDFG of a design (label 1 of Figure 1),
a DFT methodology at the RT level (label 2 of Figure 1), and a new resource
binding algorithm (label 3 of Figure 1).

—High-level test concepts: We propose several concepts in the behavioral de-
scription of a design (CDFG) for considering test and testability issues by
inserting faults, the design’s behavioral elements (operators).

—RTL DFT: The proposed DFT methodology prepares test paths for RTL mod-
ules to which the precomputed test vectors of the modules are applicable.
The steps for the DFT method are outlined next:
(a) First, we perform some modifications in the RTL modules to prepare

functional transparency and guarantee the fault propagation and value
justification in the test path of the CDFG.

(b) We assign faults to the operators in the CDFG. Each faulty operator in
the CDFG we refer to as a victim, and can be a representative of a faulty
RTL module.

(c) Because a faulty RTL module may have multiple victims in the CDFG,
the best victim that leads to a minimum test time for that RTL module
is selected.

(d) Based on the selected victim, the original CDFG is trimmed down, adding
a few transitions or states to the controller.

—New resource binding algorithm: We develop a resource (operator) binding
algorithm in a synthesis method so that the test application time of the

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 16, Publication date: April 2007.

P1: ILT
ACMJ266-07 ACM-TRANSACTION April 10, 2007 5:17

Low Test Time Binding in Behavioral Synthesis • 5

faulty operator becomes minimal. The steps for the test synthesis method
are outlined next:
(a) First, we define two testability metrics (group controllability and group

observability) for groups of CDFG operators that map to the same RTL
module.

(b) Based on the defined testability metrics of each group, we estimate the
number of test clock cycles (group test cycle) which is needed to test the
RTL module that corresponds to the group.

(c) Based on the group Test Cycle, a heuristic algorithm groups operations
in the CDFG so that the test clock cycles of the design are minimized.

In this work, we assume that the controller of a design has a reset signal.
This assumption is usually satisfied for real-life circuits. We also assume that
all variables in a CDFG are mapped to registers of the same bit width. However,
this assumption of fixed bit-width can easily be relaxed.

Section 2 describes the CDFG test concepts. Our test synthesis algorithm
is explained in Section 3. Section 4 demonstrates our experimental results.
Finally, Section 5 concludes our article and points to some future work.

2. TEST CONCEPTS AND THE PROPOSED DFT

Our proposed synthesis algorithm uses high-level test and testability concepts
that are fully explained in Hosseinabady [2006]. In this section, we briefly
explain these concepts and show how they can be used to reduce test application
time.

2.1 CDFG Testability

Using an example, we explain the behavioral test concepts.
Example. Consider the scheduled and bound CDFG of Figure 2(a). This

CDFG is comprised of two multipliers and three adders. It also contains three
groups of operations and the horizontal lines in this figure represent the clock
boundaries. Figure 2(b) shows the datapath of this circuit. The corresponding
controller specifications are given in the state transition table and state tran-
sition graph of Figure 2(c).

The operators of the CDFG in Figure 2(a) that have been mapped into the
same hardware in the datapath (shown in Figure 2(b)) are put into the same
group, shown by the shaded areas in Figure 2(a). For example, the module Add1
of Figure 2(b) performs the add operations 2 and 3 in Figure 2(a).

The role of a controller is to map the CDFG of a circuit into its datapath.
Consequently, all paths in a CDFG exist in the datapath of a circuit, but the
opposite is not always true, that is, the obtained datapath has additional paths
which are translated into extra edges in the CDFG. To realize and thus utilize
these edges, changes may be needed in the circuit’s controller.

Consider a faulty operator in the CDFG of a circuit, and assume that some
test vectors for detecting faults for an individual instance of this operator have
already been generated. To utilize these precomputed test vectors, we have to
find a path from the primary inputs of the circuit to the inputs of this operator.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 16, Publication date: April 2007.

P1: ILT
ACMJ266-07 ACM-TRANSACTION April 10, 2007 5:17

6 • M. Hosseinabady et al.

Fig. 2. An example CDFG: (a) scheduled and bound CDFG; (b) datapath; (c) controller.

Hence, it is possible to assign precomputed test vectors at inputs of the operator
by applying appropriate values at primary inputs of the CDFG. In addition, a
path from the output of the faulty operator to primary outputs of the CDFG
must propagate the effect of a fault. The path from primary inputs of the circuit
to the faulty operator, and from this operator to the primary outputs, is referred
to as a test path. A test path for an operator in the CDFG is also a test path for
the related module at the datapath to which that operator is mapped during
allocation. A test path consists of two justification paths and one propagation
path. For example, a test path for Operation 1 of Figure 2(a) is (a → *1, b → *1,
*1 → +3 → *5 → y), where the first two parts are justification paths and the third
is the propagation path.

CDFG loops are important in finding a test path. Two different types of such
loops are local loop and global loop. A loop is a local loop if it is within a single
group of operators in the CDFG, otherwise, it is a global loop. The CDFG of
Figure 2(a) has one global loop, namely, (+2 → +4 → *5 → +2).

Note that for a faulty operator, a test path with the following conditions guar-
antees justification of precomputed test vectors and propagation of fault effects:
(1) In the presence of a reconvergent fanout, only one input of an operation in
the test path should be influenced by the test path and its other input should
have a known value; (2) all modules in the test path should be transparent to
propagate and justify values on their inputs and output, respectively.

By adding a few extra transitions or states to the controller so as to cut off
some paths, the first condition is satisfied. To satisfy the second condition, the
next section represents a few modifications to the modules of an RTL design li-
brary (as the proposed DFT) and considerations during the synthesis algorithm.
The experimental results show that these modifications and considerations add
low area and delay overhead to the datapath.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 16, Publication date: April 2007.

P1: ILT
ACMJ266-07 ACM-TRANSACTION April 10, 2007 5:17

Low Test Time Binding in Behavioral Synthesis • 7

2.2 Proposed DFT

Applying the backward implication to each module through the justification
path of the module-under-test justifies the precomputed test vector on the pri-
mary inputs. Furthermore, forward implication of each module along the prop-
agation path of the module-under-test propagates the fault effects to a primary
output.

The behavior of a two-input operator Op of the CDFG can be modeled as
y ≡ F (a, b) (mod 2n), where F is the functionality of the operator, a and b are
two inputs of the operator, and n is the bit width of the output. Assume that
operator Op is on the defined test path, that its a input is affected by the test
path, and its b input has a known value during the test. The justification and
propagation conditions in our defined test path are as follows.

—Justification: For any desired value on output y , there is an appropriate value
on a so that y ≡ F (a, b) (mod 2n).

—Propagation: Two different values on the a input leads to two different values
on the output y .

An element of the RTL design library that satisfies the aforementioned con-
ditions has the functional transparency property. Some elements of the RTL
design library already have functional transparency. Modifying the elements
of the RTL design library or adding a multiplexer to the datapath provides
functional transparency for other RTL design library elements.

Adder, Inverter, and Buffer are three elements in the RTL design library
that already satisfy the preceding conditions. A multiplier satisfies them if its b
input is an odd number. Thus, to guarantee the existence of an odd value on the
inputs of the multiplier, the LSB of each input of the multiplier will be ORed
with a controller signal.

A multibit AND/OR operator that has a string of 1/0 on its b input or a path to
set a string of 1/0 on this input satisfies the previous properties. Using control-
lability and observability metrics, the proposed synthesis algorithm supports
the existence of such a path. In the absence of such a path, adding a multiplexer
in the datapath creates the necessary path.

A relational operator satisfies the justification condition, but may not satisfy
the propagation condition. In this case, propagation of fault effects on compara-
tor inputs should be transferred to another path during the test mechanism.
Using the controllability and observability metrics, a synthesis algorithm cre-
ates such a path. If this path does not exist, adding a multiplexer to the datapath
creates it.

While the aforementioned operators have only inputs for data, a conditional
operator has a select input (as control inputs) as well as the data inputs. The
conditional operator satisfies the justification and propagation conditions if its
select input is set to the appropriate value. Thus, test controller should set this
value during the test.

Note that equal values on both inputs of a multiplexer block the fault effect on
its select input. Thus, an extra one-bit multiplexer has been added to solve the
problem of propagating faults on the select signal of the original multiplexer.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 16, Publication date: April 2007.

P1: ILT
ACMJ266-07 ACM-TRANSACTION April 10, 2007 5:17

8 • M. Hosseinabady et al.

Fig. 3. Transparent multiplexer.

Fig. 4. Types of victim.

Adding this extra multiplexer makes the original multiplexer transparent, so
the propagation path from its select input to its output is guaranteed. Figure 3
depicts the process of making the select input of a multiplexer observable.

2.3 Faulty Operator in the CDFG

When an RTL module is faulty, all operators in the CDFG that are mapped to
this RTL module are faulty. Thus, we would have multiple faults in the CDFG
operators. To handle this issue, all faulty operators in the CDFG, except one
(called the victim), will be removed, and a trimmed down CDFG with one faulty
operator is constructed. The trimmed down CDFG has only one victim and is
used for finding tests for the faulty module of the RT-level description.

The victim is an existing or new operator that receives its inputs from outside
its group and delivers its output to the outside of its group. The new operator
is constructed by merging a few existing operators so as to inherit the best
controllability and observability of the merged operators.

Victims can be classified into three different types based on their group struc-
tures. A victim of Type 1 is an existing operator in the CDFG, while other victims
are new.

—Type 1: A victim of this type is an existing operator that receives both its
inputs from outside of the group and delivers its output to the outside of the
group (see Figure 4(a)).

—Type 2: A victim of this type is a new operator constructed by merging two
or three operators. These merging operators provide the inputs and output
of the victim (see Figures 4(b) and (c)).

—Type 3: The existence of two consecutive operators (Figure 4(e)) or a local loop
(Figure 4(d)) in the group confirms the existence of a self-loop path around

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 16, Publication date: April 2007.

P1: ILT
ACMJ266-07 ACM-TRANSACTION April 10, 2007 5:17

Low Test Time Binding in Behavioral Synthesis • 9

Fig. 5. Test path and modified controller to test group 1 of Fig. 2.

the corresponding RTL module. Thus, the RTL module can be fed by one
input from outside of the related group. Since in this scheme the feedback
input of the RTL module receives its value from the other input through the
RTL module, we should verify the correctness of this value by propagating
it to an observable point. Thus, in the case of two consecutive operations, a
victim of Type 3 is an operator constructed by merging these two consecutive
operators. If a self-loop exists in the group, the victim is the operator with
the self-loop.

Extending of the preceding idea, global loops in the CDFG can be handled.
If a global loop exists around a victim, a test vector can be applied to the victim
in two steps and justifying twice guarantees the fault detection.

Note that a new victim can be realized by adding a few extra transitions or
states to the controller. After finding a victim for a given group according to
victim’s type, the CDFG is trimmed by deleting all other operators in the group
and their connecting nodes.

2.4 Example

Using the example of Figure 2(a), this subsection explains our DFT method-
ology. Thus, consider the example of Figure 2(a). In group 1 of Figure 2(a),
operator *1 has a good controllability and operator *5 has a good observability,
thus, merging these two operators, we can generate a victim of Type 2 (i.e., *v1
of Figure 5(a)) that is a new operator. Adding a new state to the controller re-
alizes this victim. Figure 5 shows the reduced CDFG for testing the Mul1 RTL
module and the corresponding modified controller. In this case, the test path in
the datapath is (a→*v1, b→*v1, *v1→y) and the controller during test has only
the new state Ts1 in which the operator *v1 is activated. Therefore, one clock
cycle is enough to apply a precomputed test vector to the module-under-test.

Group 2 of Figure 2(a) has a victim of Type 2. Since both inputs of operator +2
come from outside of the group and the output of operator +3 goes to the outside
of the group, the victim of this group satisfies the conditions of the victim of
Type 2. Because the outputs of the two operators +2 and +3 are bound to the
same register, an extra transition that bypasses state 3 of Figure 2(a) realizes
the victim of this group (i.e., transition Tr5 from state 2 to state 4 of Figure 6(b)).

Using the added operator and related state to test group 1 (i.e., operator *v1
and state Ts1 of Figure 5), and state S1 of the controller, the victim can get

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 16, Publication date: April 2007.

P1: ILT
ACMJ266-07 ACM-TRANSACTION April 10, 2007 5:17

10 • M. Hosseinabady et al.

Fig. 6. Test path and modified controller to test group 2 of Fig. 2.

Fig. 7. Test of group 3.

its test vectors in two clock cycles (see Figure 6). Furthermore, state S4 of the
controller propagates the test response to the primary output. Figure 6(a) shows
the reduced CDFG to test group 2 of operators. Based on this reduced CDFG,
four clocks are needed to test group 2 operators. The modified controller is shown
in Figures 6(b) and (c). As shown in Figure 6, the test path in the reduced CDFG
is (a → *1 → +v2, a → *v1 → +v2, +v2 → *5 → y) and the corresponding path of
the controller is (s1 → Ts1 → s2 → s4).

Group 3 of Figure 2(a) has only one member. Its inputs are fed from primary
inputs a and b through operators *1 and +2. In addition, its output propagates
to the primary output y through operator *5. Note that there are reconvergent
paths (i.e., paths *1 → +2 → +4 → *5 and *1 → +3 → *5) with which to apply
test vectors to the operator of this group. To resolve this problem, we can modify
state 4 such that operator *5 is fed by primary input b and the output of group 3.
The modified state and operator are shown in Figure 7 as state Ts2 and

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 16, Publication date: April 2007.

P1: ILT
ACMJ266-07 ACM-TRANSACTION April 10, 2007 5:17

Low Test Time Binding in Behavioral Synthesis • 11

Fig. 8. Alternative operator grouping for design of Fig. 2.

operator *N5, respectively. Figure 7(a) shows the reduced CDFG to test group 3,
and Figures 7(b) and (c) show the modified controller of the design. The test
path of the CDFG is (a→*1 → +2 → +4, 5 → +4, +4 → *N5 → y). Based on the
reduced CDFG of Figure 7(a), four clock cycles are needed to apply a test vector
to the corresponding RTL module of group 3.

As the number of precomputed test vectors for a 32-bit adder and multiplier
based on ATALANTA [Lee and Ha 1993] (a public domain combinational test
generator tool) are 23 and 89, respectively, the total number of required clock
cycles to test the datapath of this implementation becomes (4+4)*23 + 1*89
+ 3 = 276, in which 4*23 clock cycles are needed to test groups 2 and 3, 1*89
clock cycles are needed to test group 1, and 3 clock cycles are needed to reset
the controller to switch between groups during test.

2.5 Effects of Resource Binding on TAT

Synthesis has a high impact, not only on increasing the chance of finding a
victim in a group, but also on reducing test application time. As mentioned, our
aim is to reduce the test application time by finding a suitable module binding
in the CDFG of a design. In this section, the effects of module binding on the
testability and test application time of the design are shown using an example.

Example. Figure 8(a) shows an alternative operator grouping for the given
scheduled CDFG of Figure 2. Figures 8(b) and (c), respectively, show the data-
path and controller for the new implementation.

The victim of group 1 in the new operator binding (i.e., Figure 8) is the same
as that of group 1 in Figure 2. The reduced CDFG to test this group is shown
in Figure 9(a). Therefore, one clock cycle is needed to apply a test vector to this
group.

Group 2 of operators in Figure 8(a) consists of two operators +2 and +4.
Inputs of operator +2 come from outside the group and the output of operator
+4 goes to the outside of the group. Hence, the victim of this group is of Type 2

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 16, Publication date: April 2007.

P1: ILT
ACMJ266-07 ACM-TRANSACTION April 10, 2007 5:17

12 • M. Hosseinabady et al.

Fig. 9. Test paths for group of Fig. 8.

and generated by merging operators +2 and +4. Using the new operator to
realize the victim of group 1 (i.e., *v1 of Figure 9(a)), Figure 9(b) shows the
reduced CDFG to test group 2. Based on this figure, four clock cycles are needed
to apply a test vector to the module-under-test.

Group 3 of Figure 8(a) consists of one operator and this operator is the victim
of Type 1. Bypassing clock cycle 2 of Figure 8(a) (Tr6 of Figure 9(d)), we can use
the reduced CDFG of Figure 9(c) to test this group. Based on this reduced CDFG,
three clock cycles are needed to apply a test vector to the module-under-test.
Figure 9(d) shows the modified controller.

Therefore, using the precomputed test vectors generated by ATALANTA, the
total number of required clock cycles to test the datapath of the given design is
4*23 + 3*23 + 1*89 + 3 = 253, of which 4*23 and 3*23 clock cycles are needed
to test groups 2 and 3, respectively, 1*89 clock cycles are needed to test group
1, and 3 clock cycles are needed to reset the circuit to switch between groups
during test.

Comparing the total number of required test clock cycles of the two different
synthesized structures in Figures 2 and 8 (276 versus 253 clock cycles) shows
the impact of group binding during the synthesis process on test application
time.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 16, Publication date: April 2007.

P1: ILT
ACMJ266-07 ACM-TRANSACTION April 10, 2007 5:17

Low Test Time Binding in Behavioral Synthesis • 13

3. HIGH-LEVEL SYNTHESIS

Our aim in this section is to consider testability during operator grouping while
minimizing test application time. For this purpose, we propose a heuristic algo-
rithm for operator grouping. The heuristic algorithm used for operator grouping
may be coupled with any high-level synthesis tool for reducing test applica-
tion time regarding testability metrics. This algorithm is based on the group
testability measurement defined in the following subsection. The input to the
algorithm is a scheduled control data flow graph (CDFG) of the design.

3.1 Testability Analysis

In this section, a model is presented for calculating the test application time.
For this purpose, we assign two metrics to each group in the CDFG of a design.
These metrics are called group controllability (GC) and group observability
(GO).

—Group controllability (GC): Controllability of a group (GC) is the difficulty of
setting the inputs of the group victim to any desired value. In other words,
the GC of a given group is the minimum number of clock cycles during which
both of the group victim inputs can be set to the desired values.

—Group observability: Observability of a group (GO) is the difficulty of observ-
ing the values of the group victim output on a primary output of the design.
In other words, the GO of a given group is the minimum required number of
clock cycles for propagating the group victim output to a primary output of
the design.

—Group test cycle: Test cycle of a group (GTC) is defined as the sum of the GC
and GO of that group. In other words, GTC is the number of required clock
cycles to apply a test vector to that group.

To measure GC and GO metrics, first the controllability and observability
of each signal in the CDFG of a design must be measured. The controllability
of each signal in the CDFG is the number of times various operations must be
activated to control that signal. Similarly, the observability of each signal in the
CDFG is the number of times various operations must be activated to observe
that signal at a primary output. Then, based on the obtained controllability and
observability metrics for each signal of the group and based on the victim type
of the group, the group controllability and observability metrics are measured.

3.2 Module Binding Based on the Testability Metrics

As mentioned earlier, suitable operation grouping during synthesis can reduce
the test application time of a design. In this section, we propose a heuristic
grouping method based on our testability metrics. In our method, we assume
that a design is specified by a scheduled CDFG.

The aim of the proposed algorithm is to incrementally group the compatible
operations (nonoverlapping operations of the same type) in order to reduce the
test application time of the design. Our algorithm consists of two stages: com-
puting the testability metrics and grouping appropriate operations. Algorithm 1

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 16, Publication date: April 2007.

P1: ILT
ACMJ266-07 ACM-TRANSACTION April 10, 2007 5:17

14 • M. Hosseinabady et al.

shows the pseudocode of the proposed algorithm. As can be seen in this algo-
rithm, individual operations are first interpreted as individual groups and their
corresponding testability metrics measured (lines 3–5 in Algorithm 1). In the
following steps, the groups are sorted based on their corresponding group test
cycle (GTC) (line 6), and that group with the greatest group test cycle (Gworst)
is selected (line 7). Then, considering the impact of merging Gworst with each
group compatible with Gworst, we find the best candidate (the group which im-
plies the greatest improvement on the GTC of Gworst) to be merged with Gworst
(lines 8–22) and generate a new group. Consequently, this new group replaces
the two merging groups. This process is repeated until the number of groups
does not change.

Algorithm 1: Operator Grouping Algorithm.
1 GroupAlgorithm(CDFG)
2 {
3 Assign each operator of the CDFG to an individual group (G={Gi| i = 0,. . . ,n})
4 n=number of groups
5 Compute the testability metrics (GC, GO, GTC) of each group
6 Sort the groups based on their GTC
7 Gworst = Group with the largest GTC
8 For (i = 1; i <= n; i++)
9 If (Gworst is compatible with Gi)
10 {
11 Gworst,i=Merge(Gworst, Gi);
12 GTCworst,i=GTC(Gworst,i);
13 }
14 If (Gworst is not compatible with any Gi)
15 {
16 Remove Gworst from G
17 If (G is empty)
18 Exit();
19 Else
20 Goto Line 5;
21 }
22 J = Index of a merged group with minimum GTC
23 Replace Gj and Gworst with Gworst,j
24 n = n – 1;
25 Goto Line 5;
26 }

3.3 Controller Modification and Test Generation

After applying the synthesis method, a scheduled and bound CDFG will be ob-
tained. Based on the obtained groups of operators in the CDFG, the datapath
and controller of the design are modified by the DFT algorithm. The DFT al-
gorithm realizes the test paths and their minimal CDFG. Based on test path
definition, only one of the inputs of operators in the test path is unknown.
Thus, by inserting precomputed test vectors to the inputs of a victim operator
and backward tracing, appropriate test vectors at the primary inputs of the
circuit are obtained.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 16, Publication date: April 2007.

P1: ILT
ACMJ266-07 ACM-TRANSACTION April 10, 2007 5:17

Low Test Time Binding in Behavioral Synthesis • 15

Table I. Circuits Statistics and Their Area Overhead of Lemmas

of # of # of # of # of # of # of Over
Circuit Inputs Outputs ANDs NANDs ORs NOTs FFs %
Paulin 66 64 4112 10153 77 21 236 0.31
3rd Order IIR 34 32 4109 9810 17 30 207 0.25
5th Order IIR 34 32 6136 14797 69 54 369 0.21
7th Order IIR 34 32 6172 14951 73 76 435 0.19
5th order Gray MLF 34 34 2419 5682 65 58 377 0.31
6 Tap Wavelet Filter 34 64 2458 6089 17 43 371 0.47
5th Order Elliptic Filter 34 32 5238 12681 189 92 615 0.43
6th Order Parallel IIR 34 32 8275 23387 67 82 526 0.19
8th Order Parallel IIR 34 32 12273 29584 131 96 687 0.16
9th order wave 34 32 8817 26165 257 134 906 0.27

digital filter

4. EXPERIMENTAL RESULTS

We implemented our proposed methods (i.e., the DFT of Section 2.2 and heuris-
tic operator binding of Section 3) using several designs to show the effectiveness
of this process. This section explains these results in two parts. Using several
benchmarks, in the first part we evaluate our DFT method, and in the sec-
ond part we examine the proposed operator binding algorithm. The number of
transistors is used as a measure of area in the following results. We have consid-
ered standard CMOS technology that uses four transistors for NAND and NOR
gates, and six for AND and OR gates. An inverter uses two transistors, and a
flip-flop is implemented using eight transistors (i.e., C2MOS flip-flop). To evalu-
ate our works, we have used ten benchmark circuits. Table I gives the statistics
of information about these 32-bit benchmarks. Paulin [Jha et al. 2002] is a
differential equation solver. The other examples, 3rdOrderIIR, 5thOrderIIR,
7thOrderIIR, 6TapWaveletFilter [Kin 1999], 5thOrderEllipticalFilter [Potkon-
jak et al. 2004], 5thOrderGray MLF [Kirovski et al. 1999], 6thOrderParallelIIR
[Kirovski and Potkonjak 1999], 8thOrderParallelIIR, and 9thOrderWave-
DigitalFilter [Kollig and Al-Hashimi 1999] are filter circuits.

4.1 Evaluation of DFT Algorithm

We modify module elements in the RTL design library to satisfy the justifica-
tion and propagation conditions of Section 2.2. Then, these modified modules
are applied to ten benchmark circuits. The last column of Table I shows the
area overhead of the modified RTL for the benchmark circuits. As expected,
modifying the RTL modules has a relatively low area overhead.

We have implemented the DFT algorithm described in Sections 2.3 and 2.4
using C++. In the sequel, we compare our algorithm with the full scan method
that is the most frequently used DFT algorithm in the industry. The full scan
versions of these benchmarks are obtained by OPUS [Chickermane and Patel
1991] (a partial scan package). Then, ATALANTA generates their test vectors,
and ATPG parameters are considered in Table II.

Figure 10 compares the test application time (i.e., the number of clocks
needed to test a circuit) of the two DFT algorithms. Note that a logarithmic

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 16, Publication date: April 2007.

P1: ILT
ACMJ266-07 ACM-TRANSACTION April 10, 2007 5:17

16 • M. Hosseinabady et al.

Table II. ATPG Parameters [Lee and Ha 1993]

Parameter Value
Test pattern generation mode RPT + DTPG + TC
Limit of random patterns (packets) 16
Backtrack limit 10
Test pattern compaction mode REVERSE + SHUFFLE
Limit of suffling compaction 2
Number of shuffles 12

Fig. 10. Test time comparison of our DFT with full scan algorithm.

scale is used in this figure to allow for a comparison of results of the two al-
gorithms. The proposed algorithm has significantly less test time. Figure 11
depicts the area overhead resulting from the two algorithms. In this figure, a
logarithmic scale is also used so as to show the results. Our algorithm also has
very low area overhead.

Table III compares the number of test vectors and fault coverage of the two
algorithms. For the proposed algorithm, the fault coverage numbers were ob-
tained by applying precomputed test vectors to modules of datapaths of the
circuit through their test paths, and test vectors of the controller were obtained
by applying HITEC [Niermann and Patel 1991] (a sequential test generator
tool) to the gate-level description of the design. Our system-level test vectors
are concatenations of the datapath and controller test vectors. The fault cover-
age of the proposed method is slightly less than that of the full scan method.
This is because our method only increases the testability of the datapath; if we
apply a technique to make the controller more testable, the fault coverage of
our method would reach that of a full scan design.

Comparison of the proposed DFT with other DFT methods in literature can
be found in Hosseinabady et al. [2006].

4.2 Evaluation of Resource Binding

In this subsection, we compare the proposed synthesis method with the con-
ventional graph coloring synthesis method. Note that datapath allocation and

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 16, Publication date: April 2007.

P1: ILT
ACMJ266-07 ACM-TRANSACTION April 10, 2007 5:17

Low Test Time Binding in Behavioral Synthesis • 17

Table III. Fault Coverage Comparison

Our DFT Method Full-SCAN
Circuit # of TV FC % # of TV FC %
Paulin 259 99.99 115 99.99
3rd Order IIR 248 99.99 167 99.99
5th Order IIR 385 98.57 107 99.99
7th Order IIR 395 98.30 95 99.99
5th order Gray MLF 247 98.24 64 99.84
6 Tap Wavelet Filter 231 88.69 149 90.50
5th Order Elliptic Filter 470 99.48 79 99.90
6th Order Parallel IIR 537 99.21 167 99.56
8th Order Parallel IIR 756 99.15 183 99.41
9th order wave digital filter 854 97.84 284 98.45

Fig. 11. Area overhead comparison of our DFT with full scan algorithm.

binding consist of register, module, and interconnection allocation. In both the
graph coloring and our proposed synthesis, we assume that these three prob-
lems are solved separately and sequentially.

Table IV compares the test application time obtained by using the conven-
tional synthesis method with that of the proposed synthesis method. Columns
2–6 show the number of inputs, outputs, add/subtract operators, multiply
operators, and clock cycles of the scheduled CDFG. Column 7 shows the
number of clocks to test the circuit using the conventional synthesis algo-
rithm. Column 8 shows the same using our proposed synthesis algorithm.
Finally, the last column shows the percentage of TAT reduction for our pro-
posed algorithm. For small circuits for which there are no opportunities to
alter the resource sharing, the two methods provide the same test application
time (e.g., Paulin benchmark). However, for large circuits with many opera-
tors, the proposed method shows a significant reduction in test application
time.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 16, Publication date: April 2007.

P1: ILT
ACMJ266-07 ACM-TRANSACTION April 10, 2007 5:17

18 • M. Hosseinabady et al.

Ta
bl

e
IV

.
C

om
pa

ri
so

n
of

th
e

P
ro

po
se

d
M

et
ho

d
w

it
h

C
on

ve
nt

io
na

lS
yn

th
es

is

St
at

is
ti

cs
of

C
D

F
G

Pe
rf

or
m

an
ce

#
of

#
of

#
of

#
of

#
of

C
on

ve
nt

io
na

l
O

ur
T

A
T

C
ir

cu
it

In
pu

t
O

ut
pu

t
+

/−
∗

C
lo

ck
Sy

nt
he

si
s

M
et

ho
d

R
ed

uc
ti

on
%

Pa
ul

in
2

2
4

6
4

57
8

57
8

0
3rd

O
rd

er
II

R
1

1
6

8
7

10
91

73
5

32
.6

5th
O

rd
er

II
R

1
1

10
12

9
24

15
16

08
33

.4
7th

O
rd

er
II

R
1

1
14

16
11

24
58

16
48

33
.0

5th
or

de
r

G
ra

y
M

L
F

1
1

20
11

16
67

5
51

4
23

.8
6

Ta
p

W
av

el
et

F
ilt

er
1

2
10

6
11

26
33

20
50

22
.1

5th
O

rd
er

E
lli

pt
ic

F
ilt

er
1

1
26

8
15

41
35

32
16

22
.2

6th
O

rd
er

Pa
ra

lle
lI

IR
1

1
14

12
7

25
21

19
41

23
.0

8th
O

rd
er

Pa
ra

lle
lI

IR
1

1
19

16
8

38
57

32
79

15
.0

9th
or

de
r

w
av

e
di

gi
ta

lfi
lt

er
1

1
28

10
35

23
08

3
17

73
6

23
.2

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 16, Publication date: April 2007.

P1: ILT
ACMJ266-07 ACM-TRANSACTION April 10, 2007 5:17

Low Test Time Binding in Behavioral Synthesis • 19

Table V. Area Overhead Comparison

Conventional Synthesis Our Method
of # of Overhead

Circuit +/− ∗ R Trans. +/− ∗ R Trans. %
Paulin 2 2 7 67676 2 2 7 67676 0
3rd Order IIR 1 2 6 65712 1 2 6 66860 +1.75
5th Order IIR 2 3 11 99478 2 3 10 93366 −6.14
7th Order IIR 2 3 13 100760 2 3 13 100306 −0.45
5th order Gray MLF 2 1 11 40760 2 1 11 41972 +2.97
6 Tap Wavelet Filter 2 1 11 42260 2 1 11 43332 +2.54
5th Order Elliptic Filter 3 3 17 88390 3 3 17 88002 −0.44
6th Order Parallel IIR 3 4 16 147972 3 4 14 148700 +0.49
8th Order Parallel IIR 4 6 21 198448 4 6 20 200630 +1.10
9th order wave digital filter 8 5 27 166620 10 5 30 167964 +0.81

Table V shows the area overhead of the two aforementioned synthesis algo-
rithms in terms of the required number of transistors for implementation of
each design.

Columns 2, 3, and 4 show the number of add/subtract operators, multiply
operators, and registers in the RTL design obtained by the conventional syn-
thesis method, respectively. Column 5 shows the number of transistors in the
final implementation of that design. Columns 6–9 show the same information
as those of Columns 2 to 5, but as done by our synthesis method. The last col-
umn shows the area overhead of the proposed synthesis method with respect
to the conventional synthesis method. In some cases, the area of our method is
less than that of the conventional method (e.g., in 5th Order IIR the area of our
method is significantly less) and in others, the area overhead of our method is
slightly (less than 3%) more than that the conventional method. Since only test
application time is considered during the proposed operator binding algorithm,
the negligible area overhead justifies our method.

4.3 Comparison with Other Methods

Table VI(a) compares the proposed algorithm with two approaches of Ghosh
et al. [1997] and Wada et al. [2000]. The bit width of the circuit of this table
is 16-bit. Ghosh et al. [1997] present techniques that add test hardware to
a given RT-level circuit obtained by behavioral synthesis in order to ensure
that the embedded elements in the circuit are hierarchically testable. They
generate a system-level test set to deliver precomputed test sets to each element
in the RTL circuit. Wada et al. [2000] introduce strong testability and propose
a DFT method based on this for RTL datapaths to achieve 100% fault coverage.
This is accomplished by introducing additional functionality (hardware) to the
modules in a datapath, thus increasing the testability of the circuit-under-
test. The additional hardwares are called the mask element and thru function.
Table VI(b) compares the proposed algorithm with TAO, the DFT approach
presented in Ravi et al. [1998]. The bit width of the circuit of this table is
16-bit. Exploring datapath and adding hardware to the datapath, as well as
modifying the controller, TAO increases the testability of an RTL circuit.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 16, Publication date: April 2007.

P1: ILT
ACMJ266-07 ACM-TRANSACTION April 10, 2007 5:17

20 • M. Hosseinabady et al.

Ta
bl

e
V

I.
Te

st
A

pp
lic

at
io

n
T

im
e

C
om

pa
ri

so
n

[G
ho

sh
et

al
.1

99
7]

[W
ad

a
et

al
.

W
it

ho
ut

C
-t

es
ta

bl
e

W
it

ho
ut

C
-t

es
ta

bl
e

20
00

]
O

ur
M

et
ho

d
F

C
%

T
A

T
F

C
%

T
A

T
F

C
%

T
A

T
F

C
%

T
A

T
[R

av
ie

t
al

.1
99

8]
O

ur
M

et
ho

d
5th

O
rd

er
E

lli
pt

ic
F

ilt
er

99
.4

6
57

83
99

.5
1

26
12

N
/A

N
/A

99
.4

8
32

16
F

C
%

T
A

T
F

C
%

T
A

T
T

se
ng

99
.5

9
12

76
99

.7
1

84
0

N
/A

N
/A

99
.9

8
21

5
C

ha
in

m
ul

t
99

.2
38

1
99

.9
7

19
4

Pa
ul

in
99

.7
0

21
11

99
.7

2
87

4
10

0
25

12
99

.9
9

47
8

Pa
ul

in
99

.5
50

7
99

.9
8

25
1

G
C

D
N

/A
N

/A
N

/A
N

/A
10

0
76

0
99

.9
7

26
3

G
C

D
99

.1
27

8
99

.8
1

14
5

(a
)

(b
)

(a
)3

2-
bi

t
ci

rc
ui

ts
(b

)1
6-

bi
t

ci
rc

ui
ts

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 16, Publication date: April 2007.

P1: ILT
ACMJ266-07 ACM-TRANSACTION April 10, 2007 5:17

Low Test Time Binding in Behavioral Synthesis • 21

Based on these tables, our method, which synthesizes the CDFG and uses
RTL modification to decrease the test application time, is more efficient than
the other algorithms discussed herein.

5. CONCLUSIONS AND FUTURE WORK

This article presents a novel test synthesis method to reduce the test application
time for sequential circuits. This method requires minor modifications to the
controller in the RT-level description of a circuit. The control data flow graph
(CDFG) representation of an RTL circuit is used for analyzing the testability of
individual RT-level operations. Additional datapaths are introduced by altering
the controller states or transitions. This method considerably reduces the test
application time by ignoring unnecessary control states in the test process.

Resource binding in a CDFG maps variables within it to registers (register
allocation), binds operations to modules (module allocation), and offers inter-
connection among the registers and modules. In our proposed method, we as-
sume that these steps are solved separately. We can consider register allocation
during module binding to reduce test application time in future work.

REFERENCES

BHATIA, S. AND JHA, N. K. 1994. Genesis: A behavioral synthesis system for hierarchical testability.
In Proceedings of the European Design and Test Conference (Feb. 28–Mar. 3). 272–276.

CHICKERMANE, V. AND PATEL, J. H. 1991. A fault oriented partial scan design approach. In Proceed-
ings of the International Conference on Computer-Aided Design (Nov.). 400–403.

GHOSH, I., RAGHUNATHAN, A., AND JHA, N. K. 1997. Design for hierarchical testability of RTL circuits
obtained by behavioral synthesis. IEEE Trans. Comput. Aided Des. Int. Circ. Syst. 16, 9 (Nov.),
001–1014.

HOSSEINABADY, M., LOTFI-KAMRAN, P., LOMBARDI, F., AND NAVABI, Z. 2006. Low overhead DFT using
CDFG by modifying controller. IEE Proc. Comput. Digital Technol. to appear.

INOUE, M., SUZUKI, K., OKAMOTO, H., AND FUJIWARA, H. 2003. Test synthesis for datapaths using
datapath-controller functions. In Proceedings of the 12th Asian Test Symposium (ATS) (Nov).
294–299.

KIN, H. B. 1999. High-Level synthesis and implementation of built-in self-testable data path in-
tensive circuit. Ph.D. dissertation, Department of Electrical and Computer Engineering, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia.

KIROVSKI, D. AND POTKONJAK, M. 1999. Localized watermarking: Methodology and application to
behavioral synthesis. In Proceedings of the International Conference on Computer-Aided Design
(ICCAD) (Nov.). 596–599.

KIROVSKI, D., POTKONJAK, M., AND GUERRA, L. 1999. Improving the observability and controllability
of datapaths for emulation-based debugging. IEEE Trans. Comput. Aided Des. Int. Circ. Syst. 18,
11, 1529–1541.

KOLLIG, P. AND AL-HASHIMI, B. M. 1999. Reduction of latency and resource usage in bit-level
pipelined data paths for FGPAs. In Proceedings of the ACM/SIGDA 7th International Symposium
on Field Programmable Gate Arrays (FPGA). 227–234.

LEE, H. AND HA, D. 1993. On the generation of test patterns for combinational circuits. Tech. Rep.
12 93, Department of Electrical Engineering, Virginia Tech.

MAKRIS, Y., PATEL, V., AND ORAILOGLU, A. 2001. Efficient transparency extraction and utilization
in hierarchical test. In Proceedings of the 19th VLSI Test Symposium (VTS) (Apr. 29–May 3).
246–251.

MAKRIS, Y., COLLINS, J., AND ORAILOGLU, A. 2002. Fast hierarchical test path construction for circuits
with DFT-free controller-datapath interfaces. J. Electron. Test. Theory Appl. 18, 1, 29–42.

NIERMANN, T. M. AND PATEL, J. H. 1991. HITEC: A test generation package for sequential circuits.
In Proceedings of the European Design Automation Conference (Feb.). 214–218.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 16, Publication date: April 2007.

P1: ILT
ACMJ266-07 ACM-TRANSACTION April 10, 2007 5:17

22 • M. Hosseinabady et al.

POTKONJAK, M., DEY, S., AND WONG, J. L. 2004. Optimizing designs using the addition of deflection
operations. http://trix.cs.ucla.edu/jenni/papers/HotPot TR.pdf.

RAVI, S., LAKSHMINARAYANA, G., AND JHA, N. K. 1998. TAO: Regular expression based high-level
testability analysis and optimization. In Proceedings of the International Test Conference (Oct.).
331–340.

WADA, H., MASUZAWA, T., SALUJA, K. K., AND FUJIWARA, H. 2000. Design for strong testability of
RTL data paths to provide complete fault efficiency. In Proceedings of the 13th International
Conference on VLSI Design (Jan.). 300–305.

Received September 2005; revised June 2006; accepted October 2006

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 2, Article 16, Publication date: April 2007.

