

Stall Power Reduction in Pipelined Architecture Processors

Pejman Lotfi-Kamran, Amir-Mohammad Rahmani, Ali-Asghar Salehpour,
Ali Afzali-Kusha, and Zainalabedin Navabi

Nanoelectronics Center of Excellence, School of Electrical and
Computer Engineering, University of Tehran

plotfi@computer.org, am.rahmani@ece.ut.ac.ir, a.salehpour@ece.ut.ac.ir,
afzali@ut.ac.ir, and navabi@ece.neu.edu

Abstract

This paper proposes a technique for dynamic power
reduction of pipelined processors. Pipelined
processors frequently insert NOP instruction to the
pipe for generating delay or resolving dependency.
Our study shows that the percentage of power
consumed by NOP instructions in a pipelined
processor is significant. This article studies the detail
behavior of NOP instruction and proposes a technique
for eliminating unnecessary transitions that are
generated during execution of NOP instructions. Initial
results demonstrate up to 10% reduction in power
consumption for some benchmarks at a cost of
negligible performance (almost zero) and area
overhead (below 0.1%).

1. Introduction

Computer scientists have always tried to improve
the performance of processors. Today’s processors are
much faster and far more versatile than their
predecessors [1]. These chips are still somewhat below
the power and power density limits afforded by the
package/cooling solution of choice in server markets
targeted by such processors. In designing future
processors, however, energy efficiency is known to
have become one of the primary design constraints [2]
[3].

There are many microprocessor applications,
typically battery-powered embedded applications,
where energy consumption is the most critical design
constraint. In these applications, where performance is
less of a concern, relatively simple RISC like pipelines
are often used [4] [5]. In the current CMOS
technology, the most energy consumption occurs when
transistor switching or memory access activity takes
place [6] [7]. Among the instructions that a pipelined
processor executes, the NOP instruction is one that

does not contribute to any useful work. Therefore, the
power consumed for its execution is wasted.

In the pipelined architectures, the NOP instruction
is inserted for hazard elimination in addition to delay
generation. There are three types of hazards; structural,
data and control. The structural hazard may occur
when there are not enough hardware resources for
execution of combination of instructions [8] [9].

A data hazard occurs when an instruction needs the
result of a prior instruction that is still in the pipeline
and there is not enough latency between these
instructions. Two instructions are data dependent when
the second instruction requires the result of the first
one to begin its execution. A technique for preventing
data hazard is to use a forwarding unit. The forwarding
unit detects dependencies and forwards the required
data from the running instruction to the dependent
instructions. In some cases, it is impossible to forward
the result because it may not be ready. In these
situations, using a NOP instruction is inevitable [8] [9].

The last type of hazard is control hazard that occurs
when a branch prediction is mistaken or in general,
when the system has no mechanism for branch
prediction. There are two mechanisms for handling the
miss-prediction. The first mechanism is flushing the
pipe after the miss-prediction. Generally, flush
mechanisms are not cost effective. A better solution is
to fill the pipe after the jump instruction with specific
number of NOPs [8] [9].

NOP insertion eliminates hazards but also degrades
the performance of the processor. Many solutions are
presented for stall reduction (e.g., Forwarding [8],
Branch Prediction [8], Speculative Execution [8], etc.)
but a significant number of stalls still remain.

The aim of this paper is to optimize dynamic power
consumption of a pipelined processor by eliminating
useless transitions that are generated in the pipeline
when a stall happens. This article shows that in
pipelined architectures a number of useless transitions

21st International Conference on VLSI Design

1063-9667/08 $25.00 © 2008 IEEE
DOI 10.1109/VLSI.2008.34

545

21st International Conference on VLSI Design

1063-9667/08 $25.00 © 2008 IEEE
DOI 10.1109/VLSI.2008.34

541

21st International Conference on VLSI Design

1063-9667/08 $25.00 © 2008 IEEE
DOI 10.1109/VLSI.2008.34

541

21st International Conference on VLSI Design

1063-9667/08 $25.00 © 2008 IEEE
DOI 10.1109/VLSI.2008.34

541

21st International Conference on VLSI Design

1063-9667/08 $25.00 © 2008 IEEE
DOI 10.1109/VLSI.2008.34

541

21st International Conference on VLSI Design

1063-9667/08 $25.00 © 2008 IEEE
DOI 10.1109/VLSI.2008.34

541

21st International Conference on VLSI Design

1063-9667/08 $25.00 © 2008 IEEE
DOI 10.1109/VLSI.2008.34

541

is generated when a NOP passes through pipe stages.
We slightly modify the architecture of RISC processors
to reduce the useless transitions generated when a stall
happens. Our experimental results show that, with a
negligible hardware overhead, a dynamic power
reduction of up to 10 percent is achievable.

The rest of paper is organized as follows. The next
section underlines related works and their properties.
Section 3 presents a simple example that illustrates
inserted NOP instructions in pipelined architectures
contribute to unnecessary transitions. In Section 4 our
proposed technique for reducing the unnecessary
transitions is presented. Experimental results are
presented in Section 5 and conclusions come in the last
section.

2. Related Work

Hartstein and Pusak [10] explored the impact of
pipeline length on both the power and performance of a
microprocessor by theory and by simulation. Their
results show that the more important power metric is,
the shorter the optimum pipeline length that results.

In another article, authors present a bipartition dual-
encoding architecture for low-power pipelined circuits
[11]. They exploit the bipartition approach as well as
encoding techniques to reduce power dissipation not
only of combinational logic blocks but also of the
pipeline registers. Based on Shannon expansion, they
partition a given circuit into two sub-circuits such that
the number of different outputs of both sub-circuits are
reduced, and then encode the output of both sub-
circuits to minimize the Hamming distance for
transitions with a high switching probability.

The main goal of another article in low power
design is to introduce a dynamic branch prediction
scheme suitable for energy-aware VLIW (Very Long
Instruction Word) processors. The proposed technique
is based on a compiler hint mechanism to filter the
accesses to the branch predictor blocks [12].

In the same way, another group proposes a low
complexity and low power Re-Order
Buffer (ROB) design [13] that exploits the fact that the
bulk of the source operand values is obtained through
data forwarding to the issue queue or through direct
reads of the committed register values. Their ROB
design uses an organization that completely eliminates
the read ports needed to read out operand values for
instruction issue.

It is widely known that branch prediction has
enabled micro-processors to increase instruction level
parallelism (ILP) by allowing programs to
speculatively execute beyond control boundaries. In a
related work, authors present an innovative method for
power reduction which, unlike the previous work that

sacrificed flexibility for performance, reduces power in
high-performance microprocessors without impacting
performance [14]. In particular; they introduce a
hardware mechanism called pipeline gating to control
rampant speculation in the pipeline. They present
inexpensive mechanisms for determining when a
branch is likely to mispredict, and for stopping wrong-
path instructions from entering the pipeline.

There are many works that target power
optimization of pipelined processor, but almost all of
them neglect the redundant transitions of NOP
instructions and their useless power consumption. In
this article by studying the behavior of dynamic power
consumed when a NOP instruction executes, an
efficient mechanism for power reduction of this
instruction is proposed.

3. A Simple Scenario

As discussed, NOP instructions are inserted into the
pipeline by many pipelined processors to eliminate
hazards. In this section, through a simple example, we
demonstrate how these inserted NOP instructions
contribute to the overall dynamic power of a pipelined
processor by generating a number of unnecessary
transitions. For the sake of simplicity and clarity, we
discuss the scenario in the usual 5 stage MIPS pipeline
[8], but the problem can easily be generalized to any
pipelined architectures.

In pipelined architectures and in the DECODE
stage, each instruction is analyzed and control signals
for running that instruction are generated. In the later
stages of pipeline, the generated control signals are
used to control the flow of data. If the control unit
determines that the current instruction depends on the
former instructions and the forwarding cannot resolve
the dependency, the control unit inserts a NOP
instruction by deactivating some critical control signals
to be used in the later stages of pipeline including
control signals for writing to memory and register file.
We demonstrate through a simple example, the
inserted NOP contributes to unnecessary transitions.

LOAD $1, 100($2)
ADD $3, S1, $3

Figure 1. A simple program

A simple program is shown in Figure 1. The first

instruction is a load from memory and the second
instruction is an ADD instruction that uses the loaded
data. Because of the dependency between these two
instructions, after load instruction, a NOP instruction
should be inserted into the pipeline. During the

546542542542542542542

execution of the simple program of Figure 1, when the
LOAD instruction is in the DECODE stage, the control
signals and the required data corresponding to this
instruction are generated/extracted. On the rising edge
of the clock the generated/extracted control/data are
latched into the DE/EXE pipeline register. In the next
clock cycle, the ADD instruction is in the DECODE
stage and the control unit determines that a NOP
instruction should be inserted into the pipeline.
Therefore, critical control signals are deactivated and
these deactivated control signals along with the other
control signals and the required data of the ADD
instruction (current instruction in the DECODE stage)
are latched on the rising edge of the clock. Generally,
the data parts of the current and previous instructions
are different. It means that data part of NOP is different
form the former instruction (i.e., LOAD). Therefore,
passing the NOP instruction in the pipe generates a
number of transitions. In the third clock cycle, the
ADD instruction should be passed to the pipeline.
Therefore, control signals corresponding to ADD are
generated and are getting latched along with its
required data. The expectation is that the data and
some control signals of NOP and ADD are the same,
so the number of transitions of passing ADD in the
pipeline stages is negligible, but it is not the case. At
least parts of the data of the ADD instruction are
different from those of NOP because those data were
not available when they were extracted in the
DECODE stage (in fact the lack of availability of those
data is the reason of NOP insertion). It means that a
number of useless transitions is generated because of
the change of data part of the ADD instruction relative
to that of the NOP instruction. These unnecessary
transitions contribute to the overall dynamic power but
do not contribute to any useful work. The aim of this
paper is to eliminate (minimize) these transitions, thus
optimizing the dynamic power consumption of a
pipelined processor.

C
o
n
t
r
o
l

D
a
t
a

Control
Unit

Register
File

DE/EXE

I
n
s
t
r
u
c
t
I
o
n

FE/DE DECODE

Figure 2. Decode stage of a simple processor

4. Our Proposed Solutions

As discussed, the data part of an inserted NOP
instruction is not the same as that of its preceding or
subsequent instruction. It means that passing a NOP
instruction in the pipe generates a number of
transitions. In addition, passing the pending instruction
after NOP generates still a number of other transitions.
A NOP instruction does not perform any useful work;
therefore, the component of dynamic power used for
running it is wasted. The technique that is proposed
here tries to minimize this component of dynamic
power dissipation.

For the NOP instruction to generate as few
transitions as possible, its data part should be the same
as that of its preceding or subsequent instruction. As
discussed, because of the unavailability of certain data
of the pending instruction (the instruction passing the
pipe after NOP), the data part of the NOP instruction
cannot be the same as its subsequent instruction.
Therefore the best choice for the power reduction is to
use the data part of the instruction preceding NOP as
data part of the NOP instruction. In this way, as a NOP
instruction passes through a pipe, relative to the
previous cycle, the same operations are performed on
the same data in all stages of the pipeline; therefore
only a small number of transitions is generated as a
result of the NOP insertion and propagation.

For this to be implemented, it is sufficient to add a
load enable signal to the data and non-critical control
parts of DE/EXE pipe register (i.e., only critical control
signals [e.g., write to memory and register file signals]
that should be loaded in each clock cycle are not
controlled by the added load enable). When a NOP is
decided to be inserted into the pipe, the controller
should deactivate the load enable signal. This way, the
content of data and non-critical control part of the
inserted NOP instruction are not changed relative to
those of its preceding instruction.

4.1. Propagation Boundary Limitation

The technique proposed in the previous section
decreases the number of unnecessary transitions
generated when a NOP is inserted into the pipe. When
data part of the instruction preceding NOP is valid
when it is extracted in the DECODE stage, the
proposed technique guarantees no useless transitions is
generated as a NOP instruction passes the pipe.
However, if parts of the data of the instruction
preceding NOP are not valid when they are extracted in
the DECODE stage, for the correct execution, valid
data are prepared by the forwarding unit. In order to
minimize the number of transitions generated during
execution of NOP, the same data should be prepared

547543543543543543543

for the NOP instruction. If valid data of the instruction
preceding NOP are still in some pipe registers when
the NOP instruction needs them, the forwarding unit
prepares the data for the NOP as well. In this case, a
few number of transitions is generated during
execution of the NOP instruction. On the other hand, if
the valid data are not available in any pipe register
when the NOP instruction needs them (because the
instruction that generates those data is finished and
goes out of the pipe), different data are loaded into
some operators, therefore a number of useless
transitions is generated. This causes the inputs of some
other operators to change and this cycle continues until
transitions reach to the last stage of the pipeline. The
technique that we propose here limits the propagation
boundary of transitions to a single stage, i.e., the
transitions do not propagate to all stages of the
pipeline.

C
o
n
t
r
o
l

D
a
t
a

Control
Unit

DE/EXE

le1

le2

C
o
n
t
r
o
l
&
D
a
t
a

le2

EXE/MEM

C
o
n
t
r
o
l
&
D
a
t
a

MEM/WB

load enable load enable load enable

C

L
O
G
I
C

C

L
O
G
I
C

Figure 3. Load enable propagation in a pipeline

The ultimate goal is that the NOP instruction

produces the same results as those of its preceding
instruction in all pipe stages. In this condition, the
value that is loaded in each pipe register when NOP
and its preceding instruction execute are the same
except for a few critical control signals (e.g., write to
memory or register file). Therefore, loading to pipe
registers can almost be deactivated during execution of
NOP instructions. For this purpose, a load enable is
added to each pipe register. This control signal is only
applied to data and non-critical control parts of the pipe
registers. When this signal is activated, the pipe
register performs its usual operation. When this signal
is deactivated, only critical control signals are loaded
into the pipe register and the value of data and non-
critical control signals do not change. By deactivating a
pipe register’s load enable when NOP results are

written to it, only critical control signals of that pipe
register are changed and its other parts remain
unchanged. If data of a NOP instruction are not valid
(i.e., NOP data defer from those of instruction
preceding NOP), in some pipe stages a number of
transitions is generated. These transitions are
propagated until they reach a pipe register. They do not
propagate any further.

These load enables are generated by the controller
in the DECODE stage and are propagated through pipe
registers like other control signals to the desired
destination (i.e., specific pipe register). Figure 3
illustrates the mechanism of propagating load enable
control signals in the pipe registers.

5. Experimental Results

In this section, we analyze and report the power
reduction, area overhead, and timing penalty of our
proposed power reduction technique. The described
techniques have been implemented in three general
processors: MIPS [8], DLX [8], and PAYEH [9].

MIPS is a 5 stage pipelined processor and its
architecture is RISC with fixed-width 32-bit
instructions.

DLX is a text book example of a RISC processor
with a 5 stage pipeline using forwarding to avoid data
hazards.

PAYEH is a pipelined version of SAYEH [15] with
a similar instruction set and has five pipe stages.
SAYEH is a multi-cycle RISC processor with 16-bit
data and 16-bit address buses. PAYEH architecture
uses a forwarding unit. This forwarding unit can
resolve all dependencies by forwarding the required
data from the next pipe stages to the previous ones.

In the first series of experiments, we evaluated the
effectiveness of our proposed technique when an ASIC
is targeted. The modified and original MIPS, DLX, and
PAYEH processors are synthesized using the CUB
library and the area usage and the maximum clock
cycle of each of them are extracted. Table 1 compares
the area usage and maximum clock cycle of the
original and modified processors. As Table 1 indicates,
the performance penalty of the modified processors is
approximately 0%. Also the area overhead of the
proposed approach is about 0.1% of the original
processors.

Four benchmark programs are used to evaluate the
effectiveness of our proposed technique. The Factorial
benchmark reads a number and calculates its factorial.
Fibonacci reads a number and calculates the Fibonacci
series. Power reads two numbers, a and b, and
calculates a to power b (i.e., ab), and Vector Addition
reads two vectors and calculates their addition element
by element.

548544544544544544544

Table 1. Area and frequency characteristics of original and modified processors
Area Characteristic Frequency Characteristic

Processor Original
Area
(mil2)

Modified
Area
(mil2)

Overhead
(%)

Original
Frequency

(MHz)

Modified
Frequency

(MHz)

Overhead
(%)

MIPS 13457 13470 0.097 21.2 21.2 ≈ 0
DLX 8400 8411 0.13 39.5 39.5 ≈ 0

PAYEH 5974 5981 0.12 46.7 46.7 ≈ 0

Table 2. Dynamic power characteristics
of original and modified MIPS processor (ASIC)

Power Characteristic

Benchmark #
Transitions
(Original)

Transitions
(Modified)

Improvement
(%)

Factorial 1381280 1247710 9.67
Fibonacci 1317690 1203841 8.64

Power 1385450 1298028 6.31
Vector

Addition 1057050 993309 6.03

Table 3. Dynamic power characteristics

of original and modified DLX processor (ASIC)
Power Characteristic

Benchmark #
Transitions
(Original)

Transitions
(Modified)

Improvement
(%)

Factorial 1763100 1653430 6.22
Fibonacci 1660220 1560440 6.01

Power 1864770 1760530 5.59
Vector

Addition 1507060 1432460 4.95

Table 4. Dynamic power characteristics

of original and modified PAYEH processor (ASIC)
Power Characteristic

Benchmark #
Transitions
(Original)

Transitions
(Modified)

Improvement
(%)

Factorial 2763960 2519070 8.86
Fibonacci 2565480 2352030 8.32

Power 2663630 2456400 7.78

Vector
Addition 2202560 2043540 7.22

These benchmark programs are applied to the

original and modified synthesized processors and
dynamic power consumption of each processor is

estimated by counting the number of transitions that
are generated when the benchmark is running. Tables
2, 3, and 4 show the results obtained for MIPS, DLX,
and PAYEH respectively.

As Table 2 indicates, for the MIPS processor, a
maximum dynamic power reduction of 9.67% is
achieved. The average power reduction of the proposed
approach is about 7.66% for this processor. Almost the
same results are achieved for DLX and PAYEH
processors. For the DLX processor, a maximum and
average power reduction of 6.22% and 5.69% are
achieved. For PAYEH, 8.86%, and 8.04% are the
percentage of maximum and average amount of power
saving that is achieved by the proposed technique. The
results of Table 1 to 4 indicate that with a 0.13% area
overhead, an average dynamic power reduction of 5 to
8 percent is realizable.

In the second series of experiments, we evaluated
the effectiveness of our proposed technique when the
synthesis target is an FPGA. The modified and original
MIPS, DLX, and PAYEH are synthesized. Four
benchmark programs are applied to the original and
modified synthesized processors and dynamic power
consumption of each processor for execution of the
benchmarks are estimated. Tables 5, 6, and 7 show the
results obtained for MIPS, DLX, and PAYEH
respectively.

Table 5. Dynamic power characteristics

of original and modified MIPS processor (FPGA)
Power Characteristic

Benchmark Power
(Original)

Power
(Modified)

Improvement
(%)

Factorial 191.06 mw 176.07 mw 7.85
Fibonacci 182.26 mw 169.51 mw 7

Power 191.63 mw 181.56 mw 5.25
Vector

Addition 146.21 mw 138.89 mw 5

As Table 5 indicates, for the MIPS processor, a

maximum dynamic power reduction of 7.85% is
achieved. The average power reduction of proposed
approach is about 6.28% for this processor. For DLX, a

549545545545545545545

maximum and average power reduction of 5.5%, and
5.23% is achieved. For the PAYEH processor, 8.7%
and 7.82% are the percentage of maximum and average
amount of power savings respectively. The results of
Table 5 to 7 indicate that an average power reduction
of 5 to 8 percent is realizable by using the proposed
approach.

Table 6. Dynamic power characteristics

of original and modified DLX processor (FPGA)
Power Characteristic

Benchmark Power
(Original)

Power
(Modified)

Improvement
(%)

Factorial 243.87 mw 230.45 mw 5.5
Fibonacci 229.51 mw 217.34 mw 5.3

Power 256.43 mw 243.27 mw 5.13
Vector

Addition 207.44 mw 197.13 mw 4.97

Table 7. Dynamic power characteristics
of original and modified PAYEH processor (FPGA)

Power Characteristic
Benchmark Power

(Original)
Power

(Modified)
Improvement

(%)

Factorial 350.4 mw 319.9 mw 8.7
Fibonacci 343.2 mw 315.3 mw 8.11

Power 344.5 mw 319.5 mw 7.24

Vector
Addition 305.2 mw 283.1 mw 7.23

6. Conclusions

In this paper, a technique is proposed for
eliminating unnecessary transitions that are generated
when a NOP instruction is inserted into the pipe of a
pipeline processor. The proposed technique is
applicable to many pipelined architectures. While
hardware overhead and timing penalty of the proposed
approach is negligible, the dynamic power reduction of
up to 10% on some pipelined processor and benchmark
programs is achieved.

7. References

[1] Vasanth, Venkatachalam, and M Franz, “Power
Reduction Techniques for Microprocessor Systems”, ACM
Computing Surveys, Vol. 37, No. 3, September 2005, pp.
195–237.

[2] D. Brooks et al., “Power-aware Microarchitecture: Design
and Modeling Challenges for the next-generation
microprocessors”, IEEE Micro, Nov./Dec. 2000, pp. 26-44.

[3] M. J. Flynn, P. Hung, and K. Rudd, “Deep-Submicron
Microprocessor Design Issues”, IEEE Micro, July/Aug.
1999, pp. 11-22.

[5] J. Montanaro and et al. “A 160-MHz, 32-b, 0.5 W CMOS
RISC Microprocessor”, Digital Tech. J’rnal, Vol. 9, Dec.
1997, pp. 49 - 62.

[5] “PowerPC 405CR User Manual”, IBM/Motorola, 6/2000.

[6] G. Cai and C. H. Lim, “Architectural Level Power/
Performance Optimization and Dynamic Power Estimation”,
Cool Chips tutorial in conjunction with MICRO 32,
November 1999, Vol. 17, Issue 11, pp. 1061-1079.

[7] Ramon Canal, Antonio González and James E. Smith,
“Very Low Power Pipelines using Significance
Compression”, 33rd Annual IEEE/ACM International
Symposium on Microarchitecture, 2000, pp. 181-190.

[8] D. A. Patterson, and J. L. Hennessy, 2003. Computer
Architecture: A Quantitative Approach, 3rd Edition. Morgan-
Kaufmann, San Francisco, CA.

[9] S. Shamshiri, H. Esmaeilzadeh, and Z. Navabi,
“Instruction-Level Test Methodology for CPU Core Self-
Testing”, ACM Transactions on Design Automation of
Electronic Systems, Vol. 10, No. 4, October 2005, pp. 673–
689.

[10] A. Hartstein, and T. R. Puzak, “The Optimum Pipeline
Depth Considering Both Power and Performance”, ACM
Transactions on Architecture and Code Optimization, Vol. 1,
No. 4, December 2004, pp. 369-388.

[11] S.-J. Ruan, K.-L. Tsai, E. Naroska, and F. Lai,
“Bipartitioning and Encoding in Low-Power Pipelined
Circuits”, ACM Transactions on Design Automation of
Electronic Systems, Vol. 10, No. 1, January 2005, pp. 24–32.

[12] M. Monchiero, G. Palermo, M. Sami, C. Silvano, V.
Zaccaria, R. Zafalon, “Power-Aware Branch Prediction
Techniques: A Compiler-Hints Based Approach for VLIW
Processors”, GLSVLSI’04, April 26–28, 2004, Boston,
Massachusetts, USA, pp. 440-443.

[13] G. Kucuk, D. Ponomarev, K. Ghose, “Low–Complexity
Reorder Buffer Architecture”, ICS’02, June 22–26, 2002,
New York, USA, pp. 57 - 66.

[14] S. Manne, A. Klauser, D. Grunwald, “Pipeline Gating:
Speculation Control for Energy Reduction”, IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Vol. 17, Issue 11, Nov 1998, pp. 1061-
1079.

 [15] Z. Navabi, 2004, Digital Design and Implementation
with Field Programmable Devices. Kluwer Academic
Publisher.

550546546546546546546

