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Abstract 
 

This paper proposes a technique for dynamic power 
reduction of pipelined processors. Pipelined 
processors frequently insert NOP instruction to the 
pipe for generating delay or resolving dependency. 
Our study shows that the percentage of power 
consumed by NOP instructions in a pipelined 
processor is significant. This article studies the detail 
behavior of NOP instruction and proposes a technique 
for eliminating unnecessary transitions that are 
generated during execution of NOP instructions. Initial 
results demonstrate up to 10% reduction in power 
consumption for some benchmarks at a cost of 
negligible performance (almost zero) and area 
overhead (below 0.1%). 
 
1. Introduction 
 

Computer scientists have always tried to improve 
the performance of processors. Today’s processors are 
much faster and far more versatile than their 
predecessors [1]. These chips are still somewhat below 
the power and power density limits afforded by the 
package/cooling solution of choice in server markets 
targeted by such processors. In designing future 
processors, however, energy efficiency is known to 
have become one of the primary design constraints [2] 
[3]. 

There are many microprocessor applications, 
typically battery-powered embedded applications, 
where energy consumption is the most critical design 
constraint. In these applications, where performance is 
less of a concern, relatively simple RISC like pipelines 
are often used [4] [5]. In the current CMOS 
technology, the most energy consumption occurs when 
transistor switching or memory access activity takes 
place [6] [7]. Among the instructions that a pipelined 
processor executes, the NOP instruction is one that 

does not contribute to any useful work.  Therefore, the 
power consumed for its execution is wasted.  

In the pipelined architectures, the NOP instruction 
is inserted for hazard elimination in addition to delay 
generation. There are three types of hazards; structural, 
data and control. The structural hazard may occur 
when there are not enough hardware resources for 
execution of combination of instructions [8] [9]. 

A data hazard occurs when an instruction needs the 
result of a prior instruction that is still in the pipeline 
and there is not enough latency between these 
instructions. Two instructions are data dependent when 
the second instruction requires the result of the first 
one to begin its execution. A technique for preventing 
data hazard is to use a forwarding unit. The forwarding 
unit detects dependencies and forwards the required 
data from the running instruction to the dependent 
instructions. In some cases, it is impossible to forward 
the result because it may not be ready. In these 
situations, using a NOP instruction is inevitable [8] [9]. 

The last type of hazard is control hazard that occurs 
when a branch prediction is mistaken or in general, 
when the system has no mechanism for branch 
prediction. There are two mechanisms for handling the 
miss-prediction. The first mechanism is flushing the 
pipe after the miss-prediction. Generally, flush 
mechanisms are not cost effective. A better solution is 
to fill the pipe after the jump instruction with specific 
number of NOPs [8] [9]. 

NOP insertion eliminates hazards but also degrades 
the performance of the processor. Many solutions are 
presented for stall reduction (e.g., Forwarding [8], 
Branch Prediction [8], Speculative Execution [8], etc.) 
but a significant number of stalls still remain. 

The aim of this paper is to optimize dynamic power 
consumption of a pipelined processor by eliminating 
useless transitions that are generated in the pipeline 
when a stall happens. This article shows that in 
pipelined architectures a number of useless transitions 
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is generated when a NOP passes through pipe stages. 
We slightly modify the architecture of RISC processors 
to reduce the useless transitions generated when a stall 
happens. Our experimental results show that, with a 
negligible hardware overhead, a dynamic power 
reduction of up to 10 percent is achievable. 

The rest of paper is organized as follows. The next 
section underlines related works and their properties. 
Section 3 presents a simple example that illustrates 
inserted NOP instructions in pipelined architectures 
contribute to unnecessary transitions. In Section 4 our 
proposed technique for reducing the unnecessary 
transitions is presented. Experimental results are 
presented in Section 5 and conclusions come in the last 
section. 
 
2. Related Work 
 

Hartstein and Pusak [10] explored the impact of 
pipeline length on both the power and performance of a 
microprocessor by theory and by simulation. Their 
results show that the more important power metric is, 
the shorter the optimum pipeline length that results. 

In another article, authors present a bipartition dual-
encoding architecture for low-power pipelined circuits 
[11]. They exploit the bipartition approach as well as 
encoding techniques to reduce power dissipation not 
only of combinational logic blocks but also of the 
pipeline registers. Based on Shannon expansion, they 
partition a given circuit into two sub-circuits such that 
the number of different outputs of both sub-circuits are 
reduced, and then encode the output of both sub-
circuits to minimize the Hamming distance for 
transitions with a high switching probability. 

The main goal of another article in low power 
design is to introduce a dynamic branch prediction 
scheme suitable for energy-aware VLIW (Very Long 
Instruction Word) processors. The proposed technique 
is based on a compiler hint mechanism to filter the 
accesses to the branch predictor blocks [12]. 

In the same way, another group proposes a low 
complexity and low power Re-Order 
Buffer (ROB) design [13] that exploits the fact that the 
bulk of the source operand values is obtained through 
data forwarding to the issue queue or through direct 
reads of the committed register values. Their ROB 
design uses an organization that completely eliminates 
the read ports needed to read out operand values for 
instruction issue.  

It is widely known that branch prediction has 
enabled micro-processors to increase instruction level 
parallelism (ILP) by allowing programs to 
speculatively execute beyond control boundaries. In a 
related work, authors present an innovative method for 
power reduction which, unlike the previous work that 

sacrificed flexibility for performance, reduces power in 
high-performance microprocessors without impacting 
performance [14]. In particular; they introduce a 
hardware mechanism called pipeline gating to control 
rampant speculation in the pipeline. They present 
inexpensive mechanisms for determining when a 
branch is likely to mispredict, and for stopping wrong-
path instructions from entering the pipeline. 

There are many works that target power 
optimization of pipelined processor, but almost all of 
them neglect the redundant transitions of NOP 
instructions and their useless power consumption. In 
this article by studying the behavior of dynamic power 
consumed when a NOP instruction executes, an 
efficient mechanism for power reduction of this 
instruction is proposed. 

 
3. A Simple Scenario 
 

As discussed, NOP instructions are inserted into the 
pipeline by many pipelined processors to eliminate 
hazards. In this section, through a simple example, we 
demonstrate how these inserted NOP instructions 
contribute to the overall dynamic power of a pipelined 
processor by generating a number of unnecessary 
transitions. For the sake of simplicity and clarity, we 
discuss the scenario in the usual 5 stage MIPS pipeline 
[8], but the problem can easily be generalized to any 
pipelined architectures. 

In pipelined architectures and in the DECODE 
stage, each instruction is analyzed and control signals 
for running that instruction are generated. In the later 
stages of pipeline, the generated control signals are 
used to control the flow of data. If the control unit 
determines that the current instruction depends on the 
former instructions and the forwarding cannot resolve 
the dependency, the control unit inserts a NOP 
instruction by deactivating some critical control signals 
to be used in the later stages of pipeline including 
control signals for writing to memory and register file. 
We demonstrate through a simple example, the 
inserted NOP contributes to unnecessary transitions. 
 

LOAD $1, 100($2)
ADD   $3, S1, $3

 
Figure 1. A simple program 

 
A simple program is shown in Figure 1. The first 

instruction is a load from memory and the second 
instruction is an ADD instruction that uses the loaded 
data. Because of the dependency between these two 
instructions, after load instruction, a NOP instruction 
should be inserted into the pipeline. During the 
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execution of the simple program of Figure 1, when the 
LOAD instruction is in the DECODE stage, the control 
signals and the required data corresponding to this 
instruction are generated/extracted. On the rising edge 
of the clock the generated/extracted control/data are 
latched into the DE/EXE pipeline register. In the next 
clock cycle, the ADD instruction is in the DECODE 
stage and the control unit determines that a NOP 
instruction should be inserted into the pipeline. 
Therefore, critical control signals are deactivated and 
these deactivated control signals along with the other 
control signals and the required data of the ADD 
instruction (current instruction in the DECODE stage) 
are latched on the rising edge of the clock. Generally, 
the data parts of the current and previous instructions 
are different. It means that data part of NOP is different 
form the former instruction (i.e., LOAD). Therefore, 
passing the NOP instruction in the pipe generates a 
number of transitions. In the third clock cycle, the 
ADD instruction should be passed to the pipeline. 
Therefore, control signals corresponding to ADD are 
generated and are getting latched along with its 
required data. The expectation is that the data and 
some control signals of NOP and ADD are the same, 
so the number of transitions of passing ADD in the 
pipeline stages is negligible, but it is not the case. At 
least parts of the data of the ADD instruction are 
different from those of NOP because those data were 
not available when they were extracted in the 
DECODE stage (in fact the lack of availability of those 
data is the reason of NOP insertion). It means that a 
number of useless transitions is generated because of 
the change of data part of the ADD instruction relative 
to that of the NOP instruction. These unnecessary 
transitions contribute to the overall dynamic power but 
do not contribute to any useful work. The aim of this 
paper is to eliminate (minimize) these transitions, thus 
optimizing the dynamic power consumption of a 
pipelined processor. 
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Figure 2. Decode stage of a simple processor 

 

4. Our Proposed Solutions 
 

As discussed, the data part of an inserted NOP 
instruction is not the same as that of its preceding or 
subsequent instruction. It means that passing a NOP 
instruction in the pipe generates a number of 
transitions. In addition, passing the pending instruction 
after NOP generates still a number of other transitions. 
A NOP instruction does not perform any useful work; 
therefore, the component of dynamic power used for 
running it is wasted. The technique that is proposed 
here tries to minimize this component of dynamic 
power dissipation. 

For the NOP instruction to generate as few 
transitions as possible, its data part should be the same 
as that of its preceding or subsequent instruction. As 
discussed, because of the unavailability of certain data 
of the pending instruction (the instruction passing the 
pipe after NOP), the data part of the NOP instruction 
cannot be the same as its subsequent instruction. 
Therefore the best choice for the power reduction is to 
use the data part of the instruction preceding NOP as 
data part of the NOP instruction. In this way, as a NOP 
instruction passes through a pipe, relative to the 
previous cycle, the same operations are performed on 
the same data in all stages of the pipeline; therefore 
only a small number of transitions is generated as a 
result of the NOP insertion and propagation. 

For this to be implemented, it is sufficient to add a 
load enable signal to the data and non-critical control 
parts of DE/EXE pipe register (i.e., only critical control 
signals [e.g., write to memory and register file signals] 
that should be loaded in each clock cycle are not 
controlled by the added load enable). When a NOP is 
decided to be inserted into the pipe, the controller 
should deactivate the load enable signal. This way, the 
content of data and non-critical control part of the 
inserted NOP instruction are not changed relative to 
those of its preceding instruction. 
 
4.1. Propagation Boundary Limitation 
 

The technique proposed in the previous section 
decreases the number of unnecessary transitions 
generated when a NOP is inserted into the pipe. When 
data part of the instruction preceding NOP is valid 
when it is extracted in the DECODE stage, the 
proposed technique guarantees no useless transitions is 
generated as a NOP instruction passes the pipe. 
However, if parts of the data of the instruction 
preceding NOP are not valid when they are extracted in 
the DECODE stage, for the correct execution, valid 
data are prepared by the forwarding unit. In order to 
minimize the number of transitions generated during 
execution of NOP, the same data should be prepared 
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for the NOP instruction. If valid data of the instruction 
preceding NOP are still in some pipe registers when 
the NOP instruction needs them, the forwarding unit 
prepares the data for the NOP as well. In this case, a 
few number of transitions is generated during 
execution of the NOP instruction. On the other hand, if 
the valid data are not available in any pipe register 
when the NOP instruction needs them (because the 
instruction that generates those data is finished and 
goes out of the pipe), different data are loaded into 
some operators, therefore a number of useless 
transitions is generated. This causes the inputs of some 
other operators to change and this cycle continues until 
transitions reach to the last stage of the pipeline. The 
technique that we propose here limits the propagation 
boundary of transitions to a single stage, i.e., the 
transitions do not propagate to all stages of the 
pipeline. 
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Figure 3. Load enable propagation in a pipeline 

 
The ultimate goal is that the NOP instruction 

produces the same results as those of its preceding 
instruction in all pipe stages. In this condition, the 
value that is loaded in each pipe register when NOP 
and its preceding instruction execute are the same 
except for a few critical control signals (e.g., write to 
memory or register file). Therefore, loading to pipe 
registers can almost be deactivated during execution of 
NOP instructions. For this purpose, a load enable is 
added to each pipe register. This control signal is only 
applied to data and non-critical control parts of the pipe 
registers. When this signal is activated, the pipe 
register performs its usual operation. When this signal 
is deactivated, only critical control signals are loaded 
into the pipe register and the value of data and non-
critical control signals do not change. By deactivating a 
pipe register’s load enable when NOP results are 

written to it, only critical control signals of that pipe 
register are changed and its other parts remain 
unchanged. If data of a NOP instruction are not valid 
(i.e., NOP data defer from those of instruction 
preceding NOP), in some pipe stages a number of 
transitions is generated. These transitions are 
propagated until they reach a pipe register. They do not 
propagate any further. 

These load enables are generated by the controller 
in the DECODE stage and are propagated through pipe 
registers like other control signals to the desired 
destination (i.e., specific pipe register). Figure 3 
illustrates the mechanism of propagating load enable 
control signals in the pipe registers. 
 
5. Experimental Results 
 

In this section, we analyze and report the power 
reduction, area overhead, and timing penalty of our 
proposed power reduction technique. The described 
techniques have been implemented in three general 
processors: MIPS [8], DLX [8], and PAYEH [9]. 

MIPS is a 5 stage pipelined processor and its 
architecture is RISC with fixed-width 32-bit 
instructions. 

DLX is a text book example of a RISC processor 
with a 5 stage pipeline using forwarding to avoid data 
hazards. 

PAYEH is a pipelined version of SAYEH [15] with 
a similar instruction set and has five pipe stages. 
SAYEH is a multi-cycle RISC processor with 16-bit 
data and 16-bit address buses. PAYEH architecture 
uses a forwarding unit. This forwarding unit can 
resolve all dependencies by forwarding the required 
data from the next pipe stages to the previous ones. 

In the first series of experiments, we evaluated the 
effectiveness of our proposed technique when an ASIC 
is targeted. The modified and original MIPS, DLX, and 
PAYEH processors are synthesized using the CUB 
library and the area usage and the maximum clock 
cycle of each of them are extracted. Table 1 compares 
the area usage and maximum clock cycle of the 
original and modified processors. As Table 1 indicates, 
the performance penalty of the modified processors is 
approximately 0%. Also the area overhead of the 
proposed approach is about 0.1% of the original 
processors. 

Four benchmark programs are used to evaluate the 
effectiveness of our proposed technique. The Factorial 
benchmark reads a number and calculates its factorial. 
Fibonacci reads a number and calculates the Fibonacci 
series. Power reads two numbers, a and b, and 
calculates a to power b (i.e., ab), and Vector Addition 
reads two vectors and calculates their addition element 
by element. 

548544544544544544544



 

 

Table 1. Area and frequency characteristics of original and modified processors 
Area Characteristic Frequency Characteristic 

Processor Original 
Area 
(mil2) 

Modified 
Area 
(mil2) 

Overhead 
(%) 

Original 
Frequency 

(MHz) 

Modified 
Frequency 

(MHz) 

Overhead 
(%) 

MIPS 13457 13470 0.097 21.2 21.2 ≈ 0 
DLX 8400 8411 0.13 39.5 39.5 ≈ 0 

PAYEH 5974 5981 0.12 46.7 46.7 ≈ 0 
       

Table 2. Dynamic power characteristics  
of original and modified MIPS processor (ASIC) 

Power Characteristic 

Benchmark # 
Transitions 
(Original) 

# 
Transitions 
(Modified)  

Improvement 
(%) 

Factorial 1381280 1247710 9.67 
Fibonacci 1317690 1203841 8.64 

Power 1385450 1298028 6.31 
Vector 

Addition 1057050 993309 6.03 

 
Table 3. Dynamic power characteristics 

of original and modified DLX processor (ASIC) 
Power Characteristic 

Benchmark # 
Transitions 
(Original) 

# 
Transitions 
(Modified)  

Improvement 
(%) 

Factorial 1763100 1653430 6.22 
Fibonacci 1660220 1560440 6.01 

Power 1864770 1760530 5.59 
Vector 

Addition 1507060 1432460 4.95 

 
Table 4. Dynamic power characteristics 

of original and modified PAYEH processor (ASIC) 
Power Characteristic 

Benchmark # 
Transitions 
(Original) 

# 
Transitions 
(Modified) 

Improvement 
(%) 

Factorial 2763960 2519070 8.86 
Fibonacci 2565480 2352030 8.32 

Power 2663630 2456400 7.78 

Vector 
Addition 2202560 2043540 7.22 

 
These benchmark programs are applied to the 

original and modified synthesized processors and 
dynamic power consumption of each processor is 

estimated by counting the number of transitions that 
are generated when the benchmark is running. Tables 
2, 3, and 4 show the results obtained for MIPS, DLX, 
and PAYEH respectively. 

As Table 2 indicates, for the MIPS processor, a 
maximum dynamic power reduction of 9.67% is 
achieved. The average power reduction of the proposed 
approach is about 7.66% for this processor. Almost the 
same results are achieved for DLX and PAYEH 
processors. For the DLX processor, a maximum and 
average power reduction of 6.22% and 5.69% are 
achieved. For PAYEH, 8.86%, and 8.04% are the 
percentage of maximum and average amount of power 
saving that is achieved by the proposed technique. The 
results of Table 1 to 4 indicate that with a 0.13% area 
overhead, an average dynamic power reduction of 5 to 
8 percent is realizable. 

In the second series of experiments, we evaluated 
the effectiveness of our proposed technique when the 
synthesis target is an FPGA. The modified and original 
MIPS, DLX, and PAYEH are synthesized. Four 
benchmark programs are applied to the original and 
modified synthesized processors and dynamic power 
consumption of each processor for execution of the 
benchmarks are estimated. Tables 5, 6, and 7 show the 
results obtained for MIPS, DLX, and PAYEH 
respectively.  

 
Table 5. Dynamic power characteristics  

of original and modified MIPS processor (FPGA) 
Power Characteristic 

Benchmark Power 
(Original) 

Power  
(Modified)  

Improvement 
(%) 

Factorial 191.06 mw 176.07 mw 7.85 
Fibonacci 182.26 mw 169.51 mw 7 

Power 191.63 mw 181.56 mw 5.25 
Vector 

Addition 146.21 mw 138.89 mw 5 

 
As Table 5 indicates, for the MIPS processor, a 

maximum dynamic power reduction of 7.85% is 
achieved. The average power reduction of proposed 
approach is about 6.28% for this processor. For DLX, a 
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maximum and average power reduction of 5.5%, and 
5.23% is achieved. For the PAYEH processor, 8.7% 
and 7.82% are the percentage of maximum and average 
amount of power savings respectively. The results of 
Table 5 to 7 indicate that an average power reduction 
of 5 to 8 percent is realizable by using the proposed 
approach. 

 
Table 6. Dynamic power characteristics 

of original and modified DLX processor (FPGA) 
Power Characteristic 

Benchmark Power 
(Original) 

Power 
(Modified)  

Improvement 
(%) 

Factorial 243.87 mw 230.45 mw 5.5 
Fibonacci 229.51 mw 217.34 mw 5.3 

Power 256.43 mw 243.27 mw 5.13 
Vector 

Addition 207.44 mw 197.13 mw 4.97 
 

Table 7. Dynamic power characteristics 
of original and modified PAYEH processor (FPGA) 

Power Characteristic 
Benchmark Power 

(Original) 
Power 

(Modified) 
Improvement 

(%) 

Factorial 350.4 mw 319.9 mw 8.7 
Fibonacci 343.2 mw 315.3 mw 8.11 

Power 344.5 mw 319.5 mw 7.24 

Vector 
Addition 305.2 mw 283.1 mw 7.23 

 
6. Conclusions 
 

In this paper, a technique is proposed for 
eliminating unnecessary transitions that are generated 
when a NOP instruction is inserted into the pipe of a 
pipeline processor. The proposed technique is 
applicable to many pipelined architectures. While 
hardware overhead and timing penalty of the proposed 
approach is negligible, the dynamic power reduction of 
up to 10% on some pipelined processor and benchmark 
programs is achieved. 
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