
Appears in Proceedings of the 23rd International Symposium on High-Performance Computer Architecture (HPCA)?

Near-Ideal Networks-on-Chip for Servers

Pejman Lotfi-Kamran§, Mehdi Modarressi†§, and Hamid Sarbazi-Azad‡§
§School of Computer Science, Institute for Research in Fundamental Sciences (IPM)

†School of Electrical and Computer Engineering, College of Engineering, University of Tehran
‡Department of Computer Engineering, Sharif University of Technology

Abstract—Server workloads benefit from execution on many-
core processors due to their massive request-level parallelism.
A key characteristic of server workloads is the large instruction
footprints. While a shared last-level cache (LLC) captures the
footprints, it necessitates a low-latency network-on-chip (NOC)
to minimize the core stall time on accesses serviced by the LLC.
As strict quality-of-service requirements preclude the use of
lean cores in server processors, we observe that even state-of-
the-art single-cycle multi-hop NOCs are far from ideal because
they impose significant NOC-induced delays on the LLC access
latency, and diminish performance.

Most of the NOC delay is due to per-hop resource allocation.
In this paper, we take advantage of proactive resource alloca-
tion (PRA) to eliminate per-hop resource allocation time in
single-cycle multi-hop networks to reach a near-ideal network
for servers. PRA is undertaken during (1) the time interval
in which it is known that LLC has the requested data, but
the data is not yet ready, and (2) the time interval in which
a packet is stalled in a router because the required resources
are dedicated to another packet. Through detailed evaluation
targeting a 64-core processor and a set of server workloads, we
show that our proposal improves system performance by 12%
over the state-of-the-art single-cycle multi-hop mesh NOC.

Keywords-Latency; network-on-chip; resource allocation;
server

I. INTRODUCTION

Server workloads are sensitive to last-level cache (LLC)
access latency because of their large instruction footprint [1],
[2]. Prior research shows that server workloads lose as much
as half of the potential performance due to long latency LLC
hits [3]. A noticeable fraction of LLC access latency is due
to on-chip communications [1] — a request for a piece of
data or an instruction should be sent to a destined LLC slice
and the response should be sent back to the requesting core.

A common network-on-chip (NOC) in today’s many-core
processors is a two-dimensional mesh. It has been shown
that a mesh-based fabric leads to poor performance on server
workloads [1], [4]. The performance in mesh-based designs
suffers as a result of a large average hop count, each hop
involving a router traversal.

To reduce NOC latency, researchers have proposed single-
cycle multi-hop networks [5], [6]. Such networks benefit
from the fact that wires are relatively fast, and as such, in
a single clock cycle, a packet can pass over more than one
hop. Reducing the number of hops, a single-cycle multi-hop

network improves performance over a mesh-based design by
accelerating accesses to the LLC.

However, server workloads have strict quality-of-service
requirements, so they require relatively fat cores with high
clock frequency [7]. Large cores increase the link length be-
tween two adjacent hops, and high clock frequency reduces
the time budget for link traversal. Together, these two factors
limit the effectiveness of single-cycle multi-hop networks
in reducing the number of hops for server processors.
Consequently, even single-cycle multi-hop networks impose
significant router delay on the LLC access latency.

Most of the per-hop delay is due to resource allocation.
On arriving at a router, a packet’s flit first needs to allocate
the required resources and then use the allocated resources
to go to the next hop. To reduce per-hop delay, prior work
proposed allocating the resources to a flit a few cycles before
its arrival at a router [8]. Using this concept, we propose
proactive resource allocation (PRA) to eliminate the resource
allocation delay of a single-cycle multi-hop network.

In contrast to prior work [8] that pre-allocates resources on
a per-flit basis, PRA pre-allocates resources for the whole
packet to avoid flit reordering in a single-cycle multi-hop
network [5]. With PRA, packets may pass up to a few hops
(e.g., two) in a single cycle. PRA is effective because it
takes advantage of two opportunities to allocate resources
to packets ahead of time on the way downstream to the
destination: (1) the period between the end of tag and data
lookup in the LLC [9], and (2) the in-network blocking
period in which requested resources are not free.

When an LLC slice receives a request for a piece of data
or an instruction, if the request turns into a hit in the LLC,
there will be a response to the requesting core. Last-level
caches of most processors benefit from a serial tag and data
lookup to reduce energy usage [10], [11]. For such LLCs,
the whole data lookup time is available for PRA. In cases
when LLC uses a parallel tag and data lookup, data lookup
takes longer than the tag lookup, as the data array is much
larger, and the time between the end of the tag and data
lookup is available for proactive resource allocation.

Moreover, if a packet (either a request or a response)
is waiting in a router because the output port is busy
forwarding a multi-flit packet, PRA benefits from the waiting
time by proactively allocating the required resources for the
waiting packet on the way downstream to the destination.

? Copyright c© 2017 IEEE. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version
of Record was published in the proceedings of the 23rd International Symposium on High-Performance Computer Architecture (HPCA) (DOI: ).



We make the observation that if the downstream router has
enough buffers to store the in-transfer packet that holds
the requested resources, we can determine exactly when
the transmission of the in-transfer packet will end and
consequently when the waiting packet can be transmitted.

In this paper, we make the following contributions:
• To the best of our knowledge, this is the first work that

shows that single-cycle multi-hop networks are far from
ideal for server processors.

• We show that pre-allocating resources to packets (and
not individual flits) in a single-cycle multi-hop fashion
within the two suggested time intervals results in a near-
ideal network for servers, which is within 4% of the
performance of an ideal network.

• To the best of our knowledge, this is the first time that
packet stall time in a router is used for pre-allocating
resources in the network.

• We use a full-system simulation infrastructure to eval-
uate PRA in the context of a 64-core server processor
on a set of server workloads. Our results show that
PRA offers 12% higher performance as compared to a
single-cycle multi-hop network.

II. BACKGROUND

In this section, we examine features of server workloads,
and then describe trends in many-core processors. Last,
we survey on-die interconnect schemes and describe their
implications for performance in the context of many-core
server processors.

A. Server Workloads

Server workloads have several features that are common
across a wide range of applications, such as web search and
media streaming [2], [3], [7]. Three of the common features
are (1) request independence, (2) quality-of-service (QoS)
requirements, and (3) sensitivity to LLC access latency.
We examine these three common features in the following
sections.

Request Independence: Users’ requests that are pro-
cessed by server workloads are mostly mutually indepen-
dent. The independence of requests makes server workloads
a good candidate for execution on many-core processors.

Quality-of-Service (QoS) Requirements: Many server
workloads (e.g., web search and media streaming) have
latency requirements as part of their service-level agreement.
Moreover, server workloads increasingly invoke computa-
tionally intensive and performance-critical kernels [2], [7].
As lean cores (tiny cores with low frequency, e.g., [12]) may
jeopardize application quality-of-service and latency con-
straints, they are not commonly used in server processors.

Sensitivity to LLC Access Latency: Server workloads
have large instruction footprints beyond what can be cap-
tured in L1-I caches [1], [2]. Consequently, last-level caches

Figure 1. Elements of tiled server processors.

hold the instruction footprints. As a result, server workloads
are sensitive to LLC access latency.

B. Server Processors

The observations captured in the previous section are
reflected in several contemporary server processors. One
such design is the Intel Xeon E5 series processors. Depend-
ing on the model, the E5 series features up to 12 cores,
a banked LLC with 6-30 MB of storage capacity, and a
ring interconnect for connecting cores and cache banks.
While appropriate for a modest number of cores, the ring
interconnect stands as a major obstacle for scaling up the
core count, as its delay has linear dependence on the number
of interconnected components.

To overcome the scalability limitations of ring-based de-
signs, emerging many-core processors, such as Intel Knights
Landing [13], use a tiled organization. Figure 1 shows an
overview of a generic tiled processor. Each tile consists of a
core, one bank of the distributed last-level cache, directory
slice, and a router. The tiles are linked via a routed, packet-
based, multi-hop interconnect in a mesh topology.

C. NOC Architecture

Even mesh-based designs expose the core-LLC com-
munications to significant network delays, and diminish
performance. Each hop in a mesh network involves a router
traversal, which adds delay due to the need to access the
packet buffers, arbitrate for resources, and navigate the
switch. These delays diminish the performance of a mesh-
based tiled processor on server workloads [4].

To overcome the performance drawbacks of mesh-based
interconnects, researchers developed a single-cycle multi-
hop network named SMART [5] for on-die communications.
SMART takes advantage of a dedicated multi-drop network
to set up multi-hop paths. When a header flit wins the
arbitration, instead of sending the flit to the link in the next
cycle, SMART attempts to establish a multi-hop path using
the multi-drop network, which takes one cycle. In the next
cycle, the header flit goes to the link, potentially passing over
multiple hops (e.g., eight hops) before getting latched in the
input buffer of a router. SMART reduces the contributions
of routers to the end-to-end delay at the expense of an
additional clock cycle delay to set up a multi-hop path.



0.0	
0.2	
0.4	
0.6	
0.8	
1.0	
1.2	
1.4	

Media	Streaming	Web	Search	 GMean	

Pe
rf
or
m
an

ce
			
			
			
			

(n
or
m
al
iz
ed

	to
	M

es
h)
	 SMART	 Ideal	

Figure 2. Performance of SMART and ideal NOCs, normalized to mesh.

Unfortunately, SMART does not offer a significant perfor-
mance boost in the context of server processors. As cores in
server processors are relatively fat with high clock frequency,
a single-cycle multi-hop NOC can send a packet over just a
few hops in a single cycle (e.g., two hops). Given the extra
cycle needed to set up a multi-hop path and the probability
that not all links are idle at the same time, the net effect of
SMART in server processors is negligible.

Figure 2 compares the performance of the SMART net-
work to that of an ideal network with zero router latency
(link delay and contention are accounted for) for two repre-
sentative server workloads. Both performance numbers are
normalized to that of a mesh network. Packets may pass
over two hops in a single cycle in both SMART and ideal
networks. The details of the methodology can be found
in Section IV. The results show that the performance of
SMART is almost the same as that of the mesh interconnect.
Moreover, a hypothetical network that does not impose
router delay on the end-to-end packet latency results in an
average 28% performance improvement for Media Stream-
ing and Web Search workloads as compared to the mesh.

In summary, to get good performance from server work-
loads, we need to minimize the contributions of routers to
the on-die communication delay in a single-cycle multi-hop
network.

III. OUR PROPOSAL

This work aims to eliminate resource allocation time
from the end-to-end packet transmission latency. For this
purpose, on the way downstream to the destination, we
proactively allocate resources to packets before they demand
the resources. To proactively allocate resources, we need to
know what resources are needed for transmission of a packet
and in which timeslots. The former can be determined by
the destination of a packet, as we know the whole path to the
destination. The latter can be calculated if one knows when
the packet starts passing through the network. Knowing the
starting time, it is easy to calculate when the packet enters
and exits each hop, given the assumption that proactive
resource allocation is successful in prior hops.

We need to know the required information (i.e., starting
time and destination) a few cycles before a packet starts

traveling in the network. We observe that under two frequent
events, the required information is known a few cycles
before the actual packet transmission: (1) upon an LLC hit,
and (2) when a packet is stalled because the requested output
port is busy sending a multi-flit packet.

Depending on the available time, the distance between the
node that initiates PRA and the destination, and the status
of the required resources, PRA allocates part or even all of
the required resources to the destination. For part of the path
to the destination where resources are proactively allocated,
the packet just uses the resources, which greatly speeds up
the transfer, and for other parts, the packet first allocates the
resources, as in a standard network, before using them.

Proactive resource allocation is a general idea and can
be implemented on any NOC. As a case study, we provide
details for the implementation of PRA on a standard mesh
network.

A. PRA on a Mesh Network

In server processors, networks need to have three mes-
sage classes—request, response, and coherence—to avoid
protocol deadlock [14]. L1 caches are effective at filtering
access to the network in server processors, so the traffic
in the network is not heavy [4], [15].1 Consequently, each
message class usually consists of a single virtual channel
(VC). Moreover, as the coherence traffic is negligible [4],
[16], [17], the request and response traffic determines the
performance.

The mesh network, with slight modifications to support
PRA, is used for packet transmission. We refer to the mesh
network as the data network. We augment the data network
with a narrow bufferless control network to proactively
allocate resources in the data network. In the following
sections, we first explain the modifications needed in the
data network for PRA and then discuss the control network
in detail.

B. Data Network

Without PRA, the data network (i.e., the standard mesh
network) does not support single-cycle multi-hop traversal.
A header flit first goes to the VC and crossbar allocation,
and if the required resources are allocated to it, goes to
the crossbar and link in the following cycle. The rest of
the flits follow the head flit in subsequent cycles. With
PRA, however, resources are pre-allocated to packets so that
packets can benefit from single-cycle multi-hop traversal.
We assign resources to packets on a cycle-by-cycle basis.
When a cycle in a router is assigned to a packet, all the
necessary resources in the router are assigned to that packet.
Moreover, for multi-flit packets, PRA either allocates the
necessary resources for the transmission of all flits or fails.

1While the traffic is moderate in server workloads, most of the NOC
traffic is due to instruction misses, and so the latency of the network
significantly affects performance [2].



 

Figure 3. A 2-cycle proactively allocated path from R1 to R4.

Figure 3 shows a proactively allocated path between R1
and R4. Assuming two hops can be passed in a single cycle,
the 3-hop path consists of two single-cycle traversals of
length 2 and 1. The second part of the path is shorter because
either R4 is the final packet destination or the required
resources are not idle at R4. In router R1 and at time t,
a packet is read from VC1’s buffer, and is passed through
the crossbar and R1–R2 link. In router R2 and at the same
cycle, the mux and demux are set so that whatever comes out
of the R1–R2 link goes to the crossbar and R2–R3 link. So
the packet bypasses R2 and goes directly toward R3, where
the demux is set so that the packet goes to the latch. The
latches are used for temporary storage of flits after passing
over n hops, where n is the number of hops that a flit can
pass over in a single cycle (while PRA only supports two-
hops-per-cycle traversal, the data network is general). In the
following cycle (i.e., t+1), the packet similarly goes to R4
and is buffered in VC1. As resource allocation is performed
proactively, the whole transfer time from R1 to R4 is two
cycles.

Figure 4 shows components of a router in the data
network. Components that are unique to or modified by PRA
are shaded in gray. One of the modified components is the
input unit. In addition to standard VCs, we need to add two
extra VCs to the input units for operation of PRA. One VC is
a bypass link that lets packets bypass the VC buffers and go
directly to the crossbar. The other added VC is a latch that
is used as a temporary 1-cycle storage within a proactively
allocated path.

Moreover, for each output port there is a set of bit vectors
that store the allocation status of the output port for several
timeslots starting from the next cycle. For each cycle, the bit
vectors indicate whether resource allocation is done for that
cycle (Valid vector in Figure 4). If the resource allocation
is done, the bit vectors also indicate the input port that the
packet comes from (Input Select), the exact VC within the
port (Local VC Select), and the exact VC of the downstream
router to which the packet should go (Downstream VC
Select). The content of the bit vectors is shifted to the left
each cycle and one free timeslot becomes available in the last
cycle. The control network sets the bit vectors, as explained
in Section III-C.

The arbiter is one of the components that are slightly
modified to support proactive resource allocation. The arbiter
consists of a local arbiter, as in a standard mesh network, and
a PRA arbiter. If the bit vectors indicate that no proactive

Figure 4. Mesh+PRA router in the data network.

resource allocation is recorded for a given timeslot, the local
arbiter will be in charge; otherwise, the PRA arbiter decides
what will happen in the cycle. Figure 4 shows how local
and PRA arbiters are connected together. The PRA arbiter
uses the bit vectors to decide what to do in each cycle. If
there is no recorded resource allocation for the next cycle, it
does nothing. Otherwise, based on the bit vectors, it sets the
select of the mux to connect the right VC to the crossbar,
sets the control signal of the crossbar to send the packet
to the output port, and sets the select of the demux of the
downstream router to guide the packet to the right VC.

Finally, the data network includes a Long Stall Detection
(LSD) unit that checks for a stalled packet waiting for the
end of transmission of a multi-flit packet. If there are enough
buffers in the downstream router for the multi-flit packet,
this unit injects a control packet into the control network to
proactively allocate resources for the stalled packet.

C. Control Network

The control network is a narrow, bufferless NOC that is
used for proactive resource allocation in the data network.
A control packet pre-allocates resources in the data network
to accelerate packet transmission. If a control packet cannot
pre-allocate resources in a router, it simply gets dropped. A
control network consists of a mesh of single-cycle multi-
drop segments, as shown in Figure 5. The figure highlights
the internal structure and connections of a control network’s
router in the X dimension. The router has the same connec-
tions in the Y dimension.

Each router is connected to the next two routers in each
direction using a multi-drop segment. Turns are not allowed
in multi-drop segments as a way of minimizing the overhead.
With multi-drop segments, when a router sends a control
packet, two subsequent routers receive the packet. We use
2-hop multi-drop segments to enable control packets to pass
over two hops in two cycles: one cycle for packet processing
and one for packet transmission.

A router has two multi-drop inputs per direction. For
each direction, there are three latches: two corresponding
to the two multi-drop inputs and one associated to the LSD,
as we will discuss shortly. The three latches are statically
prioritized such that the closest multi-drop segment has the



Resource 
Alloc. Unit

Multi-drop1

Multi-drop2

LSD PRA request 

To control 
network 
crossbar

ACK ACK 
Multi-drop

X+

ACK

Multi-drop
X-

ACK

Node x Node x+2Node x+1 Node x+3 Node x+4

Latch

t+1 t+5

t t+2 t+4

t+3

t+6

t+2 t+4

t+1 t+5

ACK

Control 
Packet

t+3(b)

To/From PRA 
Status Vectors 

(a)

R1 R2 R3 R5 R6 R7R4

Latch
Latch

t+2 t+4 t+6

Figure 5. Control network: (a) links and signals and (b) signaling for
sending a control packet from R1 to R7.

highest and the LSD has the lowest priority. PRA prioritizes
the closest multi-drop segment over the farthest one to
enable the second node of a 2-hop multi-drop to locally
determine whether the first node can proactively allocate the
required resources or not, as we explain in this section. If a
router receives more than one control packet in a direction
in a single cycle, the lower priority packets are dropped.

Control packets, which are one flit long, consist of the
destination address, the lag between the control and the data
packet (number of cycles), the size of the data packet (long
or short), the message class (VC number), and look-ahead
routing information. The destination is either the source field
of the request packet or the destination field of the stalled
packet, and the lag is the number of cycles between the
control and its corresponding data packet.

On arriving at the LLC, a request packet is queued within
the LLC and waits for its lookup time. If the tag lookup
indicates a hit, the LLC controller will notify the network
interface (NI). The NI creates a control packet and places
it in the local latch of the control network if the latch is
empty. Otherwise, the control packet will be dropped.

Moreover, the long stall detection (LSD) unit checks to
see if a packet is waiting for a multi-flit packet, and if there
are enough buffers for transmission of the multi-flit packet. If
the conditions hold, the LSD unit generates a control packet
and injects it into the control network to proactively allocate
resources for the waiting packet.

On receiving a control packet in a given direction, the
packet is passed through the route computation unit and
resource allocation unit in parallel. If there is more than
one control packet in a direction, one is statically chosen and
the rest are dropped. The resource allocation unit determines
whether the requested timeslots on the requested output port
and downstream VC buffers can be granted. Note that the
control network always allocates buffers for a full packet.
If the packet needs to pass the bypass VC or the latch of
Figure 4, the decision is updated later, as we discuss. If
the request cannot be granted, the control packet will be
dropped. Otherwise, the granted timeslot(s) will be recorded
in the bit vectors and the required buffer space in the

downstream router is allocated properly for the full packet.
If the two routers in a multi-drop can allocate the required

resources, the second router forwards the control packet to
the subsequent multi-drop segment, provided that the control
packet’s lag is greater than zero. As it takes two cycles for
the control packet to pass over a multi-drop segment while
it takes only one cycle for the corresponding data packet to
pass over the pre-allocated multi-hop path, routers decrement
the lag to account for this difference and drop control packets
when the lag becomes zero. With the lag being zero, the
data packet has reached the control packet and no further
pre-allocation is possible.

As a control router does not know if proactive resource
allocation will succeed in the downstream router, it should
reserve a downstream buffer for the packet in the data
network. Each control router that successfully pre-allocates
the required resources passes an ACK signal back to the
upstream router. The ACK signal notifies the upstream router
that it is not the last node of a pre-allocated path. Upon
receiving the ACK signal, the control router frees up the
allocated buffer space and changes the Down Stream VC
Select (see Figure 4) for the data packet to pass through the
latch or bypass VC that are included in the input unit of
the data network. If the router is the second router in the
multi-drop segment, the latch VC will be selected (Router
3 in Figure 5(b)); otherwise the bypass link (Router 2 in
Figure 5(b)) is selected.

While only the second node in a multi-drop segment is
responsible for transmitting the control packet to the next
multi-drop segment, the transmission should happen only if
the two nodes in the multi-drop segment can pre-allocate
the required resources. Fortunately, the second node knows
whether the first node can allocate the required resources or
not, because the second node knows the status of its input
port and buffer, which are the output port and downstream
buffer of the first node, and PRA gives higher priority to the
closest multi-drop segment, as mentioned earlier.

Finally, PRA needs to avoid the possibility of two multi-
flit packets, one with normal and one with proactive resource
allocation, getting interleaved in buffers of a standard VC.
When a router allocates timeslots to a multi-flit packet on
an output port, it sets a special flag corresponding to the
message class. While this flag is set, no multi-flit packet can
use the message class, but single-flit packets can still use the
message class. The flag is cleared when either the multi-flit
packet passes over the output port or the downstream router,
through the ACK signal, informs the router that the multi-flit
packet will not be using the VC buffer.

IV. METHODOLOGY

Table I summarizes the key elements of our methodology,
and the following sections detail the evaluated designs,
technology parameters, workloads, and simulator.



Table I
EVALUATION PARAMETERS.

Parameter Value
Technology 32 nm, 0.9 V, 2 GHz
Processor features 64 cores, 8 MB NUCA LLC, Four DDR3-1600 memory channels
Core ARM Cortex-A15-like: 3-way out-of-order, 64-entry ROB, 16-entry LSQ, 2.9 mm2, 1.05 W
Cache per MB: 3.2 mm2, 500 mW
NOC Organizations:
Mesh Router: 5 ports, 3 VCs/port, 5 flits/VC, 1-stage (speculative) pipeline. Link: 1 cycle
SMART Router: 5 ports, 3 VCs/port, 5 flits/VC, 2-stage pipeline. Link: up to 2 tiles per cycle

Mesh+PRA

Data network: 5 ports/router, 3 VCs/port
Packets with PRA support: Bypassing pipeline stages, Link: 2 tiles per cycle
Others: 1-stage speculative pipeline. Link: 1 tile per cycle

Control network: 4-output and 13-input ports/router, 1-stage bufferless pipeline. Link: 2 tiles per cycle
Ideal Router: 5 ports, 3 VCs/port, 5 flits/VC, Bypassing pipeline stages. Link: 2 tiles per cycle

A. Processor Parameters

Our target is a 64-core processor based on the Scale-
Out Processor design methodology [18], [19], which seeks
to maximize throughput per die area. The chip features a
modestly sized last-level cache to capture the instruction
footprint and shared OS data, and dedicates the rest of the die
area to the cores to maximize throughput. The architectural
features are listed in Table I.

We consider four system organizations, as follows:
Mesh: Our baseline is a mesh-based tiled processor, as

shown in Figure 1. The 64 tiles are organized as an 8-by-8
grid, with each tile containing a core, a slice of the LLC,
and a directory node. A mesh hop consists of a single-cycle
crossbar and link traversal followed by a one-stage router
pipeline for a total of two cycles per hop at zero load.
The router performs routing, VC allocation, and speculative
crossbar (XB) allocation in the first cycle, followed by XB
and link traversal in the next cycle. Each router port has three
VCs to guarantee deadlock freedom across three message
classes: request, coherence, and response. Each VC is five
flits deep, which is the minimum needed to cover the round-
trip credit time.

SMART: The SMART-based processor has the same
tiled organization as the mesh baseline, but enjoys single-
cycle multi-hop traversal. A SMART hop consists of a two-
stage router pipeline followed by a single-cycle (potentially)
multi-tile link traversal for a total of three cycles per hop
at zero load. The router performs routing, VC allocation,
and speculative crossbar (XB) allocation in the first cycle,
a multi-tile link allocation in the second cycle, and finally
XB and link traversal. Each router port has three VCs to
guarantee deadlock freedom across three message classes.
Each VC is five flits deep.

Mesh+PRA: The proposed proactive resource allocation
(PRA) is implemented on top of the baseline mesh. LLC
waiting time and in-network blocking time are used to
proactively allocate resources using a dedicated bufferless
control network with 15-bit-wide links. At the control-

network, a hop consists of a single-stage router pipeline
followed by a single-cycle two-tile multi-drop link traversal.
At the data network, a Mesh+PRA hop consists of a single-
stage router pipeline followed by a single-cycle single-tile
traversal for a total of two cycles per hop at zero load
without PRA (i.e., baseline mesh). However, when proactive
resource allocation takes place, a packet passes over up to
two tiles (crossbars and links) in a single cycle. Each router
port has three VCs to guarantee deadlock freedom across
three message classes. Each VC is five flits deep.

Ideal: The ideal interconnection network is a hypothetical
network-on-chip with router delay of zero cycles. For the
ideal network-on-chip, only wire delays are considered. A
header flit can pass over up to two hops in a single cycle if
the required crossbars and links are free. Body flits follow
the header flit in subsequent cycles. While router delay is
zero, packets may get blocked in a router due to contention
(e.g., two packets competing for the same output port).
Each router port has three VCs for request, coherence, and
response packets. Each VC is five flits deep.

B. Technology Parameters

We use publicly available tools and data to estimate the
area and energy of the various network organizations. Our
study targets a 32 nm technology node with an on-die
voltage of 0.9 V and a 2 GHz operating frequency.

We use custom wire models, derived from a combination
of sources [20], [21], to model links and router switch fab-
rics. For links, we model semi-global wires with a pitch of
200 nm and power-delay-optimized repeaters. For SMART
and Mesh+PRA, we choose the number of repeaters to get a
link latency of 85 ps/mm. Given the delay of wires and the
aspect ratio of the tiles, two tiles can be traversed in a single
clock cycle. On random data, links dissipate 50 fJ/bit/mm,
with repeaters responsible for 19% of link energy. For area
estimates, we assume that link wires are routed over logic
or SRAM and do not contribute to network area; however,
repeater area is accounted for in the evaluation.



0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

1.2	

1.4	

Data	Serving	 MapReduce	 Media	Streaming	 SAT	Solver	 Web	Fronend	 Web	Search	 GMean	

N
or
m
al
iz
ed

	P
er
fo
rm

an
ce
	 Mesh	 SMART	 Mesh+PRA	 Ideal	

Figure 6. System performance, normalized to a mesh-based design.

Our buffer models are taken from DSENT [22]. We model
flip-flop based buffers as all NOCs have relatively few
buffers. Cache area, energy, and delay parameters are derived
via CACTI 6.5 [23]. A 1 MB slice of the LLC has an area of
3.2 mm2 and dissipates 500 mW of power (mostly leakage).
The tag and data lookups take 1 and 4 cycles, respectively.

Finally, parameters for the ARM Cortex-A15 core are
borrowed from Microprocessor Report [24] and scaled down
from the 40 nm technology node to the 32 nm target. Core
area, including L1 caches, is estimated at 2.9 mm2. Core
power is 1.05 W at 2 GHz. Core features include 3-way
decode/issue/commit, 64-entry ROB, and 16-entry LSQ.

C. Workloads

We use server workloads from CloudSuite [25]. The work-
loads include Data Serving, MapReduce, Media Streaming,
SAT Solver, Web Frontend, and Web Search. Two of the
workloads—SAT Solver and MapReduce—are batch, while
the rest are latency-sensitive and tuned to meet the response
time objectives. Prior work [2] has shown that these work-
loads have characteristics representative of the broad class
of server workloads.

D. Simulation Infrastructure

We estimate the performance of various processor designs
using the Flexus full-system simulation [26]. Flexus extends
the Virtutech Simics functional simulator with timing models
of cores, caches, on-chip protocol controllers, and intercon-
nect. Flexus models the SPARC v9 ISA and is able to run
unmodified operating systems and applications. Flexus uses
the BookSim 2.0 network simulator [27] for modeling the
on-chip network.

We use the SimFlex multiprocessor sampling methodol-
ogy [28]. Our samples are drawn over an interval of 10
seconds (except Media Streaming samples, which are drawn
over 30 seconds) of simulated time. For each measure-
ment, we launch simulations from checkpoints with warmed
caches and branch predictors, and run 100 K cycles to
achieve a steady state of detailed cycle-accurate simulation
before collecting measurements for the subsequent 50 K

cycles. We use the ratio of the number of application instruc-
tions to the total number of cycles (including the cycles spent
executing operating system code) to measure performance;
this metric has been shown to accurately reflect overall
system throughput of multiprocessors [28]. Performance
measurements are computed with 95% confidence and an
error of less than 4%.

V. EVALUATION

We first examine system performance and area efficiency
of the Mesh, SMART, and Mesh+PRA designs, given a
128-bit link bandwidth. We then present an area-normalized
performance comparison, followed by a discussion of power
trends.

A. System Performance

Figure 6 shows full system performance, normalized to
the mesh, for various NOC organizations. Mesh and SMART
offer almost the same performance. SMART enables packets
to go over two hops in a single cycle but, unlike Mesh,
requires an extra cycle to set up the multi-hop path. As
Figure 6 shows, the net effect is negligible.

The proposed Mesh+PRA offers the highest performance
when compared to realistic networks. Compared to Mesh,
Mesh+PRA improves performance by 7–29%, with a geo-
mean of 14%. On average, the proposed Mesh+PRA im-
proves performance over SMART by 12%. The highest
performance gain is registered on the Media Streaming
workload, which is characterized by very low instruction-
level parallelism (ILP) and memory-level parallelism (MLP),
making it particularly sensitive to the LLC access latency.

As a point of reference, we also include the performance
of an ideal network with zero router latency. Across all
benchmarks, the proposed Mesh+PRA closely follows the
performance of the ideal network. On average, Mesh+PRA
is only 4% behind the performance of the ideal network with
zero router latency.

B. Why is PRA Effective?

To demonstrate why PRA is capable of reducing the on-
chip network’s delay, and consequently, improving system



0%	

20%	

40%	

60%	

80%	

100%	

Data	
Serving	

MapReduce	 Media	
Streaming	

SAT	Solver	 Web	
Fronend	

Web	Search	

Lag0	

Lag1	

Lag2	

Others	

Figure 7. Distribution of control packets’ lags when they are dropped.
The maximum lag in our setup is four.

performance, it is essential to investigate how effectively
control packets proactively allocate resources for the data
packets traveling in the network. Figure 7 shows the distribu-
tion of control packets’ lags when they are dropped. Because
a control packet’s lag is decremented in each multi-drop, the
lower the lag becomes, the more resource allocation is done
for the corresponding data packet (ideally the lag becomes
zero before the control packet is dropped). Figure 7 shows
that across all workloads, 53–67% of control packets have a
lag of zero (ideal case) when they are dropped (the average
across all workloads is 61%). Moreover, 15–20% of the
control packets have a lag of one, and 17–27% have a lag of
two. More than 98% of the control packets have a lag of 0–2
across all workloads (less than 2% of control packets have
a lag of greater than two: the maximum lag in our setup is
four). The results clearly show the effectiveness of control
packets in pre-allocating resources to the data packets in the
on-chip network.

Moreover, we measure the number of control packets that
are injected into the control network. On average, we have
1.60 (SAT Solver) to 1.89 (Data Serving) control packets for
a single data packet (either a request or a response). As there
is more than one control packet per data packet and control
packets are effective at proactive resource allocation (see
Figure 7), a considerable number of a data packet’s required
resources is proactively allocated on the way downstream to
the destination.

Finally, when resources are proactively allocated on an
output port to be used later by a packet, the output port
becomes unusable by multi-flit packets (short packets, i.e.,
requests, can still use the output port) until either the
allocated resources are released or an ACK signal is received
from the downstream router. This resource underutiliza-
tion may have a negative impact on the effectiveness of
the proposed resource allocation scheme. We measure the
number of cycles that an output port cannot be used by a
packet because the port is proactively allocated to another
packet, and normalize it to the time the packet travels in the
network. Across all workloads, a packet only spends 0.01%

0	
1	
2	
3	
4	
5	
6	

Mesh	 SMART	 Mesh+PRA	

Ar
ea
	(m

m
2 )
	

Links	 Buffers	 Crossbar	

Figure 8. NOC area breakdown.

of the end-to-end latency waiting in the network because
the resources are proactively allocated to other packets.
The large number of control packets per data packet, the
effectiveness of control packets in allocating resources, and
the negligible impact of resource underutilization for server
workloads explain the performance improvements observed
in Figure 6.

C. NOC Area

Figure 8 breaks down the NOC area of the three organi-
zations by links, buffers, and crossbars. Only repeaters are
accounted for in link area, as wires are routed over tiles.

For SMART and Mesh+PRA, the area of the interconnect
is 4.5 mm2 and 4.9 mm2, respectively. Compared to the
Mesh, SMART and Mesh+PRA require 31% and 40%
more area, respectively. Because interconnect has a small
footprint (i.e., Mesh’s footprint is 3.5 mm2), the 1.0 mm2

and 1.4 mm2 area overheads of SMART and Mesh+PRA
seem considerable, but as compared to the area of the whole
chip (i.e., over 200 mm2), they are relatively small.

D. Performance-Density Comparison

The area analysis in the previous section indicates differ-
ent NOC area costs (and hence chip area) for the examined
networks. To better understand how well the various de-
signs use the chip silicon area, we assess the performance
density (i.e., performance per square millimeter) of various
processors. We only consider the area of cores, caches, and
interconnect, disregarding the area of memory channels and
IO devices.

Figure 9 summarizes the results of the study, with perfor-
mance density of the four organizations normalized to that of
the mesh (we idealistically assume the area of a mesh for the
area of the ideal network). On realistic designs, Mesh+PRA
offers the highest performance density, followed by SMART.
The lowest performance density is registered for Mesh.
While Mesh+PRA has the highest network area, due to
its effectiveness in boosting performance and relatively low
area overhead at the chip level, it is the most area-efficient
organization. Mesh+PRA boosts performance density by
14% over Mesh, and 12% over SMART. Mesh+PRA is only
5% behind the performance density of the ideal network.



0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

1.2	

1.4	

Data	Serving	 MapReduce	 Media	Streaming	 SAT	Solver	 Web	Fronend	 Web	Search	 GMean	

N
or
m
al
iz
ed

	P
er
f.	
De

ns
ity

	 Mesh	 SMART	 Mesh+PRA	 Ideal	

Figure 9. System performance per square millimeter (i.e., performance density), normalized to a mesh-based design.

E. Power Analysis

Our analysis shows that the NOC is not a significant
consumer of power at the chip level (corroborating prior
work [4], [29]). For all organizations, NOC power is below
2 W. In contrast, cores alone consume in excess of 60 W.
Low ILP and MLP of server workloads [2] is the main
reason for the low power consumption at the NOC level.

VI. RELATED WORK

Various proposals have pointed out the need for low-
latency on-chip communication mechanisms [30], [31]. Ex-
isting low-latency NOC designs often target reducing (1)
hop counts, (2) blocking latency, or (3) per-hop latency.
Hop-count reduction. Packet hop-count reduction has long
been a major target in many low-latency NOC designs.
Prior work has focused on low-diameter topologies, in-
cluding high-radix networks [32]–[34], reconfigurable net-
works [35], and mesh-based topologies equipped with extra
irregular links that are inserted either randomly [36] or
based on applications’ traffic patterns [37]. Core-to-network
mapping and customized topology generation [38] are also
effective application-specific methods that reduce average
hop count for a target application, when the application and
its traffic pattern can be pre-characterized at design time.
Blocking-latency reduction. Adaptive routing is a tech-
nique to reduce blocking latency by directing packets to less
congested paths. Among adaptive routing schemes, those
methods that leverage both local and global congestion
metrics [39]–[43] or are aware of the running applications’
traffic behavior [44] often make more appropriate routing
decisions. Moreover, arbitration plays an important role in
managing the inevitable blocking latency in favor of total
application performance and quality of service requirements.
Slack-based arbitration [45] and prioritization schemes such
as QoS-aware prioritization [46], application-aware prior-
itization [47], and message class-based prioritization [48]
are effective in increasing applications’ performance. Prior
work also showed the effectiveness of predictive switch
allocation [49], packet-chained allocation [50], run-time
adaptive buffer sizing [51], smart VC allocation [52], packet

compression [53], and heterogeneous router design [54], [55]
in NOC latency reduction.
Per-hop latency reduction. To decrease router latency,
efforts seek to cut down or bypass the pipeline stages of
routers. A single-stage router [56] utilizes extensive pre-
computation techniques to forward packets in a single cycle
under low traffic. Router bypassing, which is implemented
in prior work (such as Express Virtual Channels [57], Token
Flow Control [58], and Pseudo Circuits [59]), enables flits
to travel one hop per cycle on pre-established paths.

In flit-reservation flow control [8], a control packet tra-
verses the network ahead of data flits to reserve buffers
and channel bandwidth in advance. Each control packet
leads one or multiple flits of a packet. Unlike PRA, this
method does not support single-cycle multi-hop traversal,
and reserves resources for individual flits, which makes it
difficult to support single-cycle multi-hop traversal (e.g., flits
may be reordered [5]). Bufferless NOCs cut down router
pipeline stages by always forwarding received packets to
an output port in a single cycle [60], [61]. Most bufferless
methods enable single-cycle packet forwarding, but at the
price of deflecting or dropping the packet when the preferred
output port is busy, hence increasing network latency under
moderate traffic loads.

The design of efficient circuit-switched NOCs has been
the focus of many proposals [62], [63]. Traversing dedicated
paths, circuit-switched data need not go through buffering,
routing, arbitration, and flow control once circuits are set
up. However, this switching method often suffers from
performance degradation due to long circuit setup delay and
poor bandwidth utilization. The time-division multiplexing
(TDM) scheme mitigates the low bandwidth utilization
of circuit switching [63], but its complexity introduces
difficulties using the circuits. We use the concept of the
timeslot in allocating link bandwidth to packets, but (1)
avoid the long setup time of circuit switching by overlapping
resource allocation and packet waiting time, and (2) relax
the complex timeslot allocation and alignment of TDM by
storing packets locally in case of unsuccessful allocation.
Proactive circuit-switching [62] is a recent effort to hide long



circuit setup time by having request packets reserve circuits
for their anticipated response packets as they go toward the
destination. Although pre-allocation reduces the latency for
those packets that travel on circuits, it requires multiple NOC
planes. In addition, early reservation of circuits results in
underutilization of network bandwidth. PRA pre-allocates
resources for the exact packet transmission time; hence
bandwidth loss is minimized. Likewise, a circuit-switched
memory access NOC [9], called CIMA, pre-establishes
circuits for long response packets. Routers attached to caches
set up circuits a few cycles before actual response data
transmission. Unlike PRA, CIMA establishes circuits only
for response packets, does not use in-network packet stall
time to set up circuits, and does not benefit from multi-
hop forwarding. NOC-Out benefits from high-radix flattened
butterfly topology to reduce hop count and low latency
simple routers to reduce per-hop latency [4].

VII. CONCLUSION

Server processors require a fast fabric for core-LLC com-
munications in order to maximize performance. Due to strict
quality-of-service requirements, lean cores are not usually
used for execution of server applications. Consequently, even
state-of-the-art single-cycle multi-hop on-chip networks im-
pose significant delays on the core-LLC communications.

This work identifies resource allocation as the major
obstacle to a fast on-chip network for server processors
that use single-cycle multi-hop networks. To eliminate this
obstacle, this work takes advantage of (1) LLC data lookup
time, and (2) packet blocking time to proactively allocate
resources to packets. Experimental evaluation indicates that
our proposal improves system performance over the state-
of-the-art single-cycle multi-hop network by 12%.

ACKNOWLEDGMENT

The authors would like to thank Mohammad Sadrosadati
for his help on the wire-delay analysis, Abbas Mazloumi for
his help implementing NOCs in Booksim, and anonymous
reviewers for their valuable comments and suggestions.

REFERENCES

[1] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki,
“Reactive NUCA: Near-Optimal Block Placement and Repli-
cation in Distributed Caches,” in Proceedings of the 36th
Annual International Symposium on Computer Architecture
(ISCA), Jun. 2009, pp. 184–195.

[2] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and
B. Falsafi, “Clearing the Clouds: A Study of Emerging Scale-
Out Workloads on Modern Hardware,” in Proceedings of the
17th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
Mar. 2012, pp. 37–48.

[3] N. Hardavellas, I. Pandis, R. Johnson, N. G. Mancheril,
A. Ailamaki, and B. Falsafi, “Database Servers on Chip Mul-
tiprocessors: Limitations and Opportunities,” in Proceedings
of the 3rd Biennial Conference on Innovative Data Systems
Research (CIDR), Jan. 2007, pp. 79–87.

[4] P. Lotfi-Kamran, B. Grot, and B. Falsafi, “NOC-Out: Mi-
croarchitecting a Scale-Out Processor,” in Proceedings of
the 45th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), Dec. 2012, pp. 177–187.

[5] T. Krishna, C.-H. O. Chen, W. C. Kwon, and L.-S. Peh,
“Breaking the On-chip Latency Barrier Using SMART,”
in Proceedings of the 19th IEEE International Symposium
on High-Performance Computer Architecture (HPCA), Feb.
2013, pp. 378–389.

[6] C.-H. O. Chen, S. Park, T. Krishna, S. Subramanian, A. P.
Chandrakasan, and L.-S. Peh, “SMART: A Single-cycle Re-
configurable NoC for SoC Applications,” in Proceedings of
the Conference on Design, Automation and Test in Europe
(DATE), Mar. 2013, pp. 338–343.

[7] V. J. Reddi, B. C. Lee, T. Chilimbi, and K. Vaid, “Web Search
Using Mobile Cores: Quantifying and Mitigating the Price of
Efficiency,” in Proceedings of the 37th Annual International
Symposium on Computer Architecture (ISCA), Jun. 2010, pp.
314–325.

[8] L.-S. Peh and W. J. Dally, “Flit-Reservation Flow Control,”
in Proceedings of the 6th IEEE International Symposium
on High-Performance Computer Architecture (HPCA), Jan.
2000, pp. 73–84.

[9] P. Lotfi-Kamran, M. Modarressi, and H. Sarbazi-Azad, “An
Efficient Hybrid-Switched Network-on-Chip for Chip Multi-
processors,” IEEE Transactions on Computers, vol. 65, no. 5,
pp. 1656–1662, May 2016.

[10] D. Sanchez and C. Kozyrakis, “The ZCache: Decoupling
Ways and Associativity,” in Proceedings of the 43rd Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO), Dec. 2010, pp. 187–198.

[11] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi,
“Cuckoo Directory: A Scalable Directory for Many-core Sys-
tems,” in Proceedings of the 17th IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA),
Feb. 2011, pp. 169–180.

[12] G. Gerosa, S. Curtis, M. D’Addeo, B. Jiang, B. Kuttanna,
F. Merchant, B. Patel, M. Taufique, and H. Samarchi, “A
Sub-1W to 2W Low-Power IA Processor for Mobile Internet
Devices and Ultra-Mobile PCs in 45nm Hi-K Metal Gate
CMOS,” in Proceedings of the IEEE International Solid-State
Circuits Conference (ISSCC), Feb. 2008, pp. 256–611.

[13] A. Sodani, “Knights Landing (KNL): 2nd Generation
Intel Xeon Phi Processor,” 2015. [Online]. Available:
http://www.hotchips.org/wp-content/uploads/hc archives/
hc27/HC27.25-Tuesday-Epub/HC27.25.70-Processors-Epub/
HC27.25.710-Knights-Landing-Sodani-Intel.pdf

[14] W. Dally and B. Towles, Principles and Practices of Inter-
connection Networks, 1st ed. Morgan Kaufmann Publishers
Inc., 2003.

http://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.25-Tuesday-Epub/HC27.25.70-Processors-Epub/HC27.25.710-Knights-Landing-Sodani-Intel.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.25-Tuesday-Epub/HC27.25.70-Processors-Epub/HC27.25.710-Knights-Landing-Sodani-Intel.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc27/HC27.25-Tuesday-Epub/HC27.25.70-Processors-Epub/HC27.25.710-Knights-Landing-Sodani-Intel.pdf


[15] R. Hesse, J. Nicholls, and N. E. Jerger, “Fine-Grained Band-
width Adaptivity in Networks-on-Chip Using Bidirectional
Channels,” in Proceedings of the 6th IEEE/ACM International
Symposium on Networks-on-Chips (NOCS), May 2012, pp.
132–141.

[16] A. Moshovos, G. Memik, B. Falsafi, and A. Choudhary,
“JETTY: Filtering Snoops for Reduced Energy Consumption
in SMP Servers,” in Proceedings of the 7th IEEE Interna-
tional Symposium on High-Performance Computer Architec-
ture (HPCA), Jan. 2001, pp. 85–96.

[17] P. Lotfi-Kamran, M. Ferdman, D. Crisan, and B. Falsafi,
“TurboTag: Lookup Filtering to Reduce Coherence Directory
Power,” in Proceedings of the 16th ACM/IEEE International
Symposium on Low Power Electronics and Design (ISLPED),
Aug. 2010, pp. 377–382.

[18] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocber-
ber, J. Picorel, A. Adileh, D. Jevdjic, S. Idgunji, E. Ozer, and
B. Falsafi, “Scale-Out Processors,” in Proceedings of the 39th
Annual International Symposium on Computer Architecture
(ISCA), Jun. 2012, pp. 500–511.

[19] B. Grot, D. Hardy, P. Lotfi-Kamran, B. Falsafi, C. Nicopoulos,
and Y. Sazeides, “Optimizing Data-Center TCO with Scale-
Out Processors,” IEEE Micro, vol. 32, no. 5, pp. 52–63, Sep.
2012.

[20] J. D. Balfour and W. J. Dally, “Design Tradeoffs for Tiled
CMP On-Chip Networks,” in Proceedings of the 20th Annual
ACM International Conference on Supercomputing (ICS),
Jun. 2006, pp. 187–198.

[21] “International Technology Roadmap for Semiconductors
(ITRS), 2011 Edition.” [Online]. Available: http://www.itrs2.
net/2011-itrs.html

[22] C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller,
A. Agarwal, L.-S. Peh, and V. Stojanovic, “DSENT - A Tool
Connecting Emerging Photonics with Electronics for Opto-
Electronic Networks-on-Chip Modeling,” in Proceedings of
the 6th IEEE/ACM International Symposium on Networks-
on-Chip (NOCS), May 2012, pp. 201–210.

[23] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi,
“Optimizing NUCA Organizations and Wiring Alternatives
for Large Caches with CACTI 6.0,” in Proceedings of the 40th
Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), Dec. 2007, pp. 3–14.

[24] J. Turley, “Cortex-A15 ”Eagle” Flies the Coop,” Micropro-
cessor Report, vol. 24, no. 11, pp. 1–11, Nov. 2010.

[25] CloudSuite, http://cloudsuite.ch.

[26] Flexus, http://parsa.epfl.ch/simflex/flexus.html.

[27] N. Jiang, D. U. Becker, G. Michelogiannakis, J. Balfour,
B. Towles, J. Kim, and W. J. Dally, “A Detailed and Flexible
Cycle-Accurate Network-on-Chip Simulator,” in Proceedings
of the IEEE International Symposium on Performance Analy-
sis of Systems and Software (ISPASS), Apr. 2013, pp. 86–96.

[28] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki,
B. Falsafi, and J. C. Hoe, “SimFlex: Statistical Sampling of
Computer System Simulation,” IEEE Micro, vol. 26, no. 4,
pp. 18–31, July-August 2006.

[29] A. Kumar, P. Kundu, A. P. Singh, L.-S. Peh, and N. K. Jha,
“A 4.6Tbits/s 3.6GHz Single-cycle NoC Router with a Novel
Switch Allocator in 65nm CMOS,” in Proceedings of the 25th
International Conference on Computer Design (ICCD), Oct.
2007, pp. 63–70.

[30] R. Kumar, V. Zyuban, and D. M. Tullsen, “Interconnections in
Multi-Core Architectures: Understanding Mechanisms, Over-
heads and Scaling,” in Proceedings of the 32nd Annual
International Symposium on Computer Architecture (ISCA),
Nov. 2005, pp. 408–419.

[31] B. K. Daya, C.-H. O. Chen, S. Subramanian, W.-C. Kwon,
S. Park, T. Krishna, J. Holt, A. P. Chandrakasan, and L.-S.
Peh, “SCORPIO: A 36-core Research Chip Demonstrating
Snoopy Coherence on a Scalable Mesh NoC with In-network
Ordering,” in Proceeding of the 41st Annual International
Symposium on Computer Architecuture (ISCA), Nov. 2014,
pp. 25–36.

[32] J. Kim, J. Balfour, and W. Dally, “Flattened Butterfly Topol-
ogy for On-Chip Networks,” in Proceedings of the 40th
Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), Dec. 2007, pp. 172–182.

[33] A. Jain, R. Parikh, and V. Bertacco, “High-Radix On-chip
Networks with Low-Radix Routers,” in Proceedings of the
IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD), Nov. 2014, pp. 289–294.

[34] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, “Express
Cube Topologies for On-Chip Interconnects,” in Proceed-
ings of the 15th IEEE International Symposium on High-
Performance Computer Architecture (HPCA), Feb. 2009, pp.
163–174.

[35] M. M. Kim, J. D. Davis, M. Oskin, and T. Austin, “Polymor-
phic On-Chip Networks,” in Proceedings of the 35th Annual
International Symposium on Computer Architecture (ISCA),
Nov. 2008, pp. 101–112.

[36] H. Yang, J. Tripathi, N. E. Jerger, and D. Gibson, “Dodec:
Random-Link, Low-Radix On-Chip Networks,” in Proceed-
ings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), Dec. 2014, pp. 496–508.

[37] U. Y. Ogras and R. Marculescu, “”It’s a Small World After
All”: Noc Performance Optimization via Long-range Link
Insertion,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 14, no. 7, pp. 693–706, Jul. 2006.

[38] M. Modarressi, A. Tavakkol, and H. Sarbazi-Azad,
“Application-Aware Topology Reconfiguration for On-
Chip Networks,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 19, no. 11, pp. 2010–2022,
Nov. 2011.

[39] P. Gratz, B. Grot, and S. W. Keckler, “Regional Congestion
Awareness for Load Balance in Networks-on-Chip,” in Pro-
ceedings of the 14th IEEE International Symposium on High-
Performance Computer Architecture (HPCA), Feb. 2008, pp.
203–214.

http://www.itrs2.net/2011-itrs.html
http://www.itrs2.net/2011-itrs.html
http://cloudsuite.ch
http://parsa.epfl.ch/simflex/flexus.html


[40] P. Lotfi-Kamran, A.-M. Rahmani, M. Daneshtalab, A. Afzali-
Kusha, and Z. Navabi, “EDXY - A Low Cost Congestion-
Aware Routing Algorithm for Network-on-Chips,” Journal of
Systems Architecture, vol. 56, no. 7, pp. 256–264, Jul. 2010.

[41] S. Ma, N. E. Jerger, and Z. Wang, “DBAR: An Efficient
Routing Algorithm to Support Multiple Concurrent Applica-
tions in Networks-on-chip,” in Proceedings of the 38th Annual
International Symposium on Computer Architecture (ISCA),
Jun. 2011, pp. 413–424.

[42] B. Fu, Y. Han, J. Ma, H. Li, and X. Li, “An Abacus Turn
Model for Time/Space-efficient Reconfigurable Routing,” in
Proceedings of the 38th Annual International Symposium on
Computer Architecture (ISCA), Nov. 2011, pp. 259–270.

[43] P. Lotfi-Kamran, “Per-Packet Global Congestion Estimation
for Fast Packet Delivery in Networks-on-Chip,” The Journal
of Supercomputing, vol. 71, no. 9, pp. 3419–3439, Sep. 2015.

[44] M. A. Kinsy, M. H. Cho, T. Wen, E. Suh, M. van Dijk,
and S. Devadas, “Application-aware Deadlock-free Oblivious
Routing,” in Proceedings of the 36th Annual International
Symposium on Computer Architecture (ISCA), Nov. 2009, pp.
208–219.

[45] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, “Argia:
Exploiting Packet Latency Slack in On-chip Networks,” in
Proceedings of the 37th Annual International Symposium on
Computer Architecture (ISCA), Nov. 2010, pp. 106–116.

[46] J. W. Lee, M. C. Ng, and K. Asanovic, “Globally-
Synchronized Frames for Guaranteed Quality-of-Service in
On-Chip Networks,” in Proceedings of the 35th Annual
International Symposium on Computer Architecture (ISCA),
Nov. 2008, pp. 89–100.

[47] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das,
“Application-aware Prioritization Mechanisms for On-chip
Networks,” in Proceedings of the 42nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO), Dec.
2009, pp. 280–291.

[48] E. Bolotin, Z. Guz, I. Cidon, R. Ginosar, and A. Kolodny,
“The Power of Priority: NoC Based Distributed Cache Co-
herency,” in Proceedings of the 1st IEEE/ACM International
Symposium on Networks-on-Chip (NOCS), May 2007, pp.
117–126.

[49] H. Matsutani, M. Koibuchi, H. Amano, and T. Yoshinaga,
“Prediction Router: Yet Another Low Latency On-Chip
Router Architecture,” in Proceedings of the 15th IEEE In-
ternational Symposium on High-Performance Computer Ar-
chitecture (HPCA), Feb. 2009, pp. 367–378.

[50] G. Michelogiannakis, N. Jiang, D. Becker, and W. J.
Dally, “Packet Chaining: Efficient Single-cycle Allocation
for On-chip Networks,” in Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture
(MICRO), Dec. 2011, pp. 83–94.

[51] C. A. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, M. S.
Yousif, and C. R. Das, “ViChaR: A Dynamic Virtual Channel
Regulator for Network-on-Chip Routers,” in Proceedings of
the 39th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), Dec. 2006, pp. 333–346.

[52] Y. Xu, B. Zhao, Y. Zhang, and J. Yang, “Simple virtual chan-
nel allocation for high throughput and high frequency on-chip
routers,” in Proceeding of the 16th IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA),
Jan. 2010, pp. 1–11.

[53] R. Das, A. K. Mishra, C. Nicopoulos, D. Park, V. Narayanan,
R. Iyer, M. S. Yousif, and C. R. Das, “Performance and
power optimization through data compression in Network-
on-Chip architectures,” in Proceedings of the 14th IEEE
International Symposium on High-Performance Computer
Architecture (HPCA), Feb. 2008, pp. 215–225.

[54] A. K. Mishra, N. Vijaykrishnan, and C. R. Das, “A Case
for Heterogeneous On-chip Interconnects for CMPs,” in Pro-
ceedings of the 38th Annual International Symposium on
Computer Architecture (ISCA), Nov. 2011, pp. 389–400.

[55] S. H. Seyyedaghaei Rezaei, A. Mazloumi, M. Modarressi,
and P. Lotfi-Kamran, “Dynamic Resource Sharing for High-
Performance 3-D Networks-on-Chip,” IEEE Computer Archi-
tecture Letters, vol. 15, no. 1, pp. 5–8, Jan. 2016.

[56] R. Mullins, A. West, and S. Moore, “Low-Latency Virtual-
Channel Routers for On-Chip Networks,” in Proceedings
of the 31st Annual International Symposium on Computer
Architecture (ISCA), Nov. 2004, pp. 188–197.

[57] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha, “Express
Virtual Channels: Towards the Ideal Interconnection Fabric,”
in Proceedings of the 34th Annual International Symposium
on Computer Architecture (ISCA), Jun. 2007, pp. 150–161.

[58] A. Kumar, L.-S. Peh, and N. K. Jha, “Token Flow Control,”
in Proceedings of the 41st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Nov. 2008, pp.
342–353.

[59] M. Ahn and E. J. Kim, “Pseudo-Circuit: Accelerating Com-
munication for On-Chip Interconnection Networks,” in Pro-
ceedings of the 43rd Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), Dec. 2010, pp. 399–408.

[60] T. Moscibroda and O. Mutlu, “A Case for Bufferless Routing
in On-Chip Networks,” in Proceedings of the 36th Annual
International Symposium on Computer Architecture (ISCA),
Jun. 2009, pp. 196–207.

[61] M. Hayenga, N. E. Jerger, and M. Lipasti, “SCARAB: A
Single Cycle Adaptive Routing and Bufferless Network,” in
Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Dec. 2009, pp.
244–254.

[62] A. Abousamra, A. K. Jones, and R. Melhem, “Proactive
Circuit Allocation in Multiplane NoCs,” in Proceedings of
the 50th Annual Design Automation Conference (DAC), Jun.
2013, pp. 35:1–35:10.

[63] R. A. Stefan, A. Molnos, and K. Goossens, “dAElite: A TDM
NoC Supporting QoS, Multicast, and Fast Connection Set-
Up,” IEEE Transactions on Computers, vol. 63, no. 3, pp.
583–594, Mar. 2014.


	Introduction
	Background
	Server Workloads
	Server Processors
	NOC Architecture

	Our Proposal
	PRA on a Mesh Network
	Data Network
	Control Network

	Methodology
	Processor Parameters
	Technology Parameters
	Workloads
	Simulation Infrastructure

	Evaluation
	System Performance
	Why is PRA Effective?
	NOC Area
	Performance-Density Comparison
	Power Analysis

	Related Work
	Conclusion
	References

