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Abstract—Cloud applications have abundant request-level par-
allelism, and as a result, many-core server processors are good
candidates for their execution. A key component in a many-core
processor is the network-on-chip (NOC) that connects cores to
cache banks and memory, and acts as the medium for delivering
instructions and data to the cores. While cloud applications are
an important class of massively-parallel workloads that benefit
from many-core processors and networks-on-chip, there is no
comprehensive study for the NOC requirements of these work-
loads. In this work, we use full-system simulation and a set of
cloud applications to study the characteristics and requirements
of these applications with respect to networks-on-chip. We find
that NOC latency is the most important optimization criterion for
these workloads. As NOC traffic of these workloads is relatively
low and approximately follows uniform traffic, we find that knobs
like routing algorithm and buffer size that mostly affect NOC
bandwidth, beyond a certain point, have little impact on the
performance of these workloads. On the other hand, techniques
that reduce NOC latency directly improve the performance of
cloud applications.

I. INTRODUCTION

Major online service providers employ large networks of
datacenters to offer a growing number of services, such as
Web search, social networking, and media streaming. These
services handle independent requests that do not share any
state. Due to serving independent requests, cloud workloads
are inherently parallel and best suited to be run on many-core
processors [1].

One of the key components in a many-core processor that
affects the performance of cloud workloads is the on-chip net-
work [2], [3], [4]. Due to the importance of cloud computing,
it is necessary to design processors that run cloud workloads
efficiently. Unfortunately, there is no comprehensive study for
the network-on-chip (NOC) requirements of cloud workloads.

To have an efficient network-on-chip architecture, it is
critical to have a detailed understanding of the communication
behavior of the target applications. Without this knowledge,
designers can hardly fit the NOC to the on-chip traffic
characteristics; hence NOC may either come with more re-
sources than needed, i.e., overprovisioned, or fall short of
the bandwidth/latency requirement. While the former will
reduce resource utilization, the latter may lead to considerable
performance degradation, as a NOC is an important component
that influences overall system performance.

Several previous studies have analyzed the traffic behavior
of GPU workloads [5], PARSEC suite [6], and scientific and
signal processing applications [7]. In this paper, we focus on
the emerging cloud workloads, analyze their traffic behavior on

NOC-based multi-core processors, and shed light on suitable
NOC configurations that better fit the behavior.

We use full-system simulation and a number of cloud
applications to study NOC requirements and characteristics of
cloud applications. We find that due to good L1 performance,
NOC traffic of cloud applications is relatively low. Moreover,
the traffic pattern follows uniform distribution with very few
source-destination pairs that generate higher than average
traffic. As a significant fraction of NOC traffic in cloud
applications is due to L1 instruction misses, cloud applications
are sensitive to the NOC latency. However, as the traffic in the
network is low (in a typical setting), NOC bandwidth is not a
constraint of performance under realistic settings.

We find that a simple dimensions-order routing (DOR)
algorithm performs as good as sophisticated adaptive routing
algorithms (e.g., [8], [9], [10], [11]). Moreover, our analysis
shows that cloud applications significantly benefit from la-
tency reduction techniques, such as those that target reducing
network diameter [12], [13], shortening the router pipeline
stages [14], [15], [16], [17], [18] or facilitate single-cycle
multi-hop traversal [19], [20].

II. BACKGROUND

In this section, we review some of the main characteristics
of cloud applications and networks-on-chip.

A. Cloud Applications

Recent research [1] indicates that cloud workloads, as a
class, have characteristics that distinguish them from desktop,
scientific, and traditional server workloads. These workloads,
e.g., Web search or media streaming, are inherently parallel as
they serve a large number of requests that are overwhelmingly
independent. Essentially request independence, and the paral-
lelism that is derived from it, makes many-core processors
attractive for execution of cloud applications.

Another characteristic of cloud applications is their large
instruction footprint [1]. Cloud applications typically have
complex control flow and multi-megabyte instruction foot-
prints. Due to the large footprint, instructions do not fit in
L1 instruction caches, and as such, cores executing cloud
applications encounter frequent instruction misses. For each
miss, be an instruction or a data miss, a request needs to be
sent to the last-level cache (LLC) and the response needs to
be delivered to the core.
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Fig. 1. Elements of tiled many-core processors.

B. Mesh On-Chip Network

Many-core processors are suitable for execution of cloud
applications. These processors usually employ a tiled organi-
zation with a fully distributed last-level cache (LLC) [21]. For
the purpose of connecting private caches of the cores to the
LLC and memory channels, a mesh network-on-chip is usually
used. A 16-core tiled-based processor is shown in Figure 1.
Each tile consists of a core, a slice of the distributed last-level
cache, a directory slice, and a router. The tiles are linked via
a packet-based, multi-hop interconnect in a mesh topology.

As networks-on-chip have significant impact on the perfor-
mance of many-core processors, they need to be designed and
tuned carefully. There are many parameters that influence how
a network-on-chip operates. These parameters include routing
algorithm, size of the buffers, channel width, and the delay
of each router. In this work, we study the impact of each
parameter on the performance of many-core processors when
cloud applications are being executed.

III. EXPERIMENTAL METHODOLOGY

Table I summarizes key elements of our experimental setup,
with the following sections detailing the evaluated designs,
workloads, and simulation infrastructure.

A. Processor Parameters

We model a processor with 16 cores, 8 MB of last-
level cache, and four DDR3-1600 memory channels. Core
microarchitecture is modeled after an ARM Cortex-A15, a 3-
way out-of-order design with 32 KB L1-I and L1-D caches.
Cache line size is 64 bytes.

Our baseline is a mesh-based tiled processor, as shown in
Figure 1. The 16 tiles are organized as a 4-by-4 grid, with
each tile containing a core, a slice of the LLC, and a directory
node. A hop in the baseline mesh consists of two-stage router
pipeline followed by a single-cycle link traversal for a total of
three cycles per hop at zero load. The router performs routing,
VC allocation, and speculative crossbar (XB) allocation in the
first cycle, followed by XB traversal in the second cycle, and
link traversal in the next cycle. Each router port in the baseline
mesh has three VCs to guarantee deadlock freedom across
three message classes: requests, snoops, and responses (each

message class has just one VC). Each VC is five flits deep.
We vary various parameters of the baseline mesh according
to Table I to study the sensitivity of the performance of cloud
applications to these parameters.

B. Workloads

We use cloud workloads from CloudSuite [23]. The work-
loads include Data Serving, MapReduce, Media Streaming,
SAT Solver, Web Frontend, and Web Search. Two of the
workloads – SAT Solver and MapReduce – are batch, while
the rest are latency-sensitive and are tuned to meet the response
time objectives. Prior work [1] has shown that these workloads
have characteristics representative of the broad class of cloud
workloads.

C. Simulation Infrastructure

We measure the performance of various processor designs
using Flexus full-system simulation [24]. Flexus extends the
Virtutech Simics functional simulator with timing models
of cores, caches, on-chip protocol controllers, and intercon-
nect. Flexus models the SPARC v9 ISA and is able to run
unmodified operating systems and applications. Flexus uses
BookSim 2.0 network simulator [25] for modeling the on-chip
network.

We use the SimFlex multiprocessor sampling methodol-
ogy [24]. Our samples are drawn over an interval of 10 seconds
(30 seconds for Media Streaming) of simulated time. For
each measurement, we launch simulations from checkpoints
with warmed caches and branch predictors, and run 100 K
cycles to achieve a steady state of detailed cycle-accurate
simulation before collecting measurements for the subsequent
50 K cycles. We use the ratio of the number of application
instructions to the total number of cycles (including the cycles
spent executing operating system code) to measure perfor-
mance; this metric has been shown to accurately reflect overall
system throughput of multiprocessors [24]. Performance mea-
surements are computed with 95% confidence and an error of
less than 4%.

IV. EVALUATION

We first examine the NOC traffic behavior of cloud ap-
plications. We then present sensitivity of cloud applications’



TABLE I
EVALUATION PARAMETERS.

Parameter Baseline Variations
Technology 32 nm, 2 GHz —
Processor features 16 cores, 8 MB NUCA LLC, Four DDR3-1600 memory channels —

Core ARM Cortex-A15-like: 3-way out-of-order, 64-entry ROB
16-entry LSQ —

Topology 4×4 2D Mesh —
Routing DOR [22] Local adaptive [22]; RCA [9]
Per-hop latency 3 2; 1
Virtual channels/Message class 1 —
Flit buffers/VC 5 1; 3; 7; 9
Channel width 128 bits 32 bits; 64 bits; 256 bits
Workload CloudSuite [23] —
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Fig. 2. The average network injection rate (flit/node/cycle) of cloud applica-
tions.

performance to various NOC parameters. Our baseline is a
mesh network with one virtual channel per message class,
five buffers per VC, 128-bit channels, and 3-cycle routers with
dimension-order routing (DOR). All performance numbers are
normalized to the baseline.

A. Communication rate and behavior

Figure 2 shows the average injection rate of the considered
benchmarks. As the figure demonstrates, the traffic injection
rate varies from 0.12 flit/node/cycle in MapReduce to 0.29
flit/node/cycle in Media Streaming. Media Streaming is a data-
intensive application that deals with large online video data:
it processes and transmits data at very high rates; hence the
on-chip traffic is higher in Media Streaming than the rest of
the workloads. Even for Media Streaming, the NOC working
condition is well below the saturation point.

To investigate this issue, we show where the traffic rates
of the CloudSuite benchmarks lie in the range between the
zero-load and the saturation point. To this end, a synthetic
traffic is generated based on the spatial traffic pattern of the
CloudSuite applications (uniform with a few hotspot nodes).
Figure 3 shows the load-latency graph of a 4×4 mesh NOC
under this traffic. The results confirm that the injection range
of CloudSuite applications falls into the middle of the traffic
range: it is higher than the zero-load traffic, but is well below
the saturation point.
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Fig. 3. Packet injection rate of two cloud applications with the highest and
lowest injection rates within the load-latency graph.
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Fig. 4. Contribution of Instruction and Data misses to the on-chip traffic.

As cloud applications have large instruction footprints, we
investigate the contribution of data and instruction misses
to the network traffic. Figure 4 shows the contribution of
instruction and data misses to the network traffic. We classify
a packet as code if it is, directly or indirectly, injected into
the network because of an L1-I cache miss. Otherwise, the
packet is classified as data. In every CloudSuite application,
a significant fraction of on-chip traffic is due to instruction
misses. The contribution of instruction misses to the on-chip
traffic ranges from 19% in MapReduce to 70% in Media
Streaming. As processors are particularly sensitive to the miss
penalty of instruction caches, network latency is one of the
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Fig. 5. System performance for various routing algorithms, normalized to
the baseline mesh. The baseline uses dimension-order routing (DOR) with
1 VC/message class. The other routing algorithms include local adaptive
(Local) [22] and RCA [9]. All systems have 2 VCs/message class. To
guarantee deadlock avoidance, systems with adaptive routing algorithms use
one VC as Escape Channel.

primary optimization criterion for cloud applications.

B. Sensitivity to the Choice of Routing Algorithm

One of the components in a router that influences the
flow of packets in the network is the routing algorithm.
For every packet and in every hop, the routing algorithm
determines to which output port the packet should be sent to
for the packet to be delivered to the destination. A common
class of routing algorithms, called deterministic, decides the
output port based on a pre-defined algorithm and regardless
of the NOC congestion status. For example, dimension-order
routing (DOR) algorithm directs packets solely based on the
destination. Alternatively, adaptive routing algorithms take the
status of the network into consideration to send the packet on
a path with minimum congestion. Adaptive routing algorithms
are further classified to (1) local if they rely on information
within a router for the purpose of choosing the output port and
(2) regional (or global) otherwise. Adaptive routing algorithms
are believed to play a key role in reducing the blocking delay
that packets experience.

To study the effectiveness of routing algorithms on the per-
formance of cloud applications, we measure the effect of three
routing algorithms, DOR [22] (deterministic), Local adap-
tive [22], and RCA [9] (i.e., regional adaptive) on improving
the performance of cloud applications. All of the parameters
of the processor are similar to the baseline processor with
the only exception of the routing algorithm and the number
of virtual channels (VCs). As adaptive routing algorithms
require a deadlock avoidance mechanism [22], in all cases,
each message class has two VCs and the extra VC is used as
Escape Channel for deadlock avoidance [26].

Figure 5 shows the results of this experiment. All per-
formance numbers are normalized to the baseline. Except
on Media Streaming, which has the highest traffic load and
deviation from the uniform spatial load distribution, adaptive
routing algorithms have no effect on the performance of
cloud applications. For Media Streaming, Local and RCA
routing algorithms improve system performance over DOR
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Fig. 6. System performance for various buffer sizes per virtual channel,
normalized to the baseline mesh. The baseline has one VC with 5-flit buffers.

by 11% and 12%, respectively. Across all applications, the
performance improvement of Local and RCA over DOR is
3% and 3%, respectively. Another observation is that local
and regional routing algorithms have the same effect on the
performance of cloud applications. Even on Media Streaming,
which is the most sensitive studied application to the choice
of routing algorithm, Local and RCA yield almost the same
performance. There are two reasons for cloud applications
not being sensitive to the choice of routing algorithm: (1)
little traffic in the network as shown in Figure 2 and (2)
traffic pattern approximately follows uniform distribution, and
DOR works best for uniform traffic [9]. These results suggest
that a simple DOR algorithm is the right choice for cloud
applications to balance simplicity and performance.

C. Sensitivity to Buffer Size

Another component in a router that influences the way
that packets travel through the network is the buffer. Usually
buffers are placed at the input ports of a router: when a packet’s
flit passes a link and goes from Router A to Router B, it
gets buffered in the input port of Router B. A packet may
get blocked in a router (e.g., the output port is busy sending
another packet). In such a case, if the input port has free
buffers, subsequent flits (either flits of the blocked packet or
other packets) can pass the link and go to the input buffer,
despite the fact that previous flit is stuck in the input buffer.
Because buffers impact the performance of a network-on-chip,
one of the important design choices of a NOC is the size of
the buffer.

In this part, we study the impact of buffer size on the
performance of cloud applications. Figure 6 shows the per-
formance of a processor (similar to the baseline) when the
size of the buffer changes from 1 to 9. All performance
numbers are normalized to the performance of the baseline
processor that has 5-flit buffer. When the size of the buffer
is smaller than the packet length, if a packet is blocked, it
occupies multiple channels, and does not let other packets
use the channels (or virtual channel if a channel has more
than one virtual channel). Consequently, the utilization of
the network decreases, which leads to poor performance. In
our case, the maximum size of a packet is 5 (64B cache
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Fig. 7. System performance for various channel widths, normalized to the
baseline mesh. The baseline has 128-bit channels.

blocks and 128-bit channels), and as such, 1- and 3-entry
buffers are not enough to avoid channel occupation when a
packet is blocked. Figure 6 clearly shows that 1- and 3-entry
buffers significantly hurt performance of cloud applications
(11% and 55% lower performance as compared to 5-entry
buffers, respectively). Moreover, as the traffic in the network
is low, when the buffer size becomes equal to the maximum
packet size (i.e., 5), the system performance levels off. Beyond
five, increasing the size of the buffer has little positive impact
on the performance of cloud applications. This experiment
suggests 5-entry buffers are the right choice for the network-
on-chip of the baseline processor. A conservative design may
suggest over-provisioning the buffering capacity to eliminate
any possible buffer-induced performance loss. However, fitting
the buffer size to traffic behavior brings about more energy-
and area-efficiency, as it has been shown that buffers are the
highest contributor to the total NOC power consumption and
area [27].

D. Sensitivity to Channel Width

Another parameter of a network-on-chip that may influence
the performance is channel width. Usually size of a packet is
larger than channel width. When a large packet wants to pass a
channel, it needs to be broken into segments, called flits, where
size of a flit is equal to the size of a channel. The wider the
channel, the lower the number of flits per packet and the lower
the overhead of serialization. On the other hand, the wider a
channel is, the higher the area overhead becomes. Choosing
the size of the channels is one of the key design choices of a
network-on-chip.

In this section, we study the effect of channel width on
the performance of cloud applications. Figure 7 shows the
performance sensitivity of a 16-core processor running cloud
applications to the channel width of its network-on-chip. All
parameters of the processor are identical to the baseline with
potentially one exception: channel width. All performance
numbers are normalized to the baseline (baseline processor has
128-bit links in its channels). Figure 7 shows that 32-bit and
64-bit channels significantly hurt performance, as compared to
the baseline 128-bit channels (20% and 45%, respectively). A
data packet consists of 17 and 9 flits in 32- and 64-bit channels,
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Fig. 8. System performance for various router delays, normalized to the
baseline mesh. The baseline has routers with the delay of 3 cycles.

respectively, while the same packet just consists of 5 flits in
a 128-bit baseline network. The high serialization overhead
associated with narrow channels makes them ineffective for
cloud applications. On the other hand, increasing the size
of the channel from 128 to 256 bits results in just 6%
improvement in performance of the baseline processor. These
data suggest having 128-bit channels in the network-on-chip of
the baseline processor, as narrower channels significantly hurt
performance and wider channels do not yield commensurate
increase in performance.

E. Sensitivity to Per-Hop Latency

One of the parameters of a network-on-chip that may affect
the performance is per-hop latency. A packet, on the way
to the destination, should pass multiple hops (routers). The
minimum delay that a packet experiences in each hop depends
on the network-on-chip. While a packet may experience a
delay longer than the minimum in a hop due to conflicts
with other packets, the minimum per-hop delay is influential
in determining the performance. In this part, we examine the
sensitivity of cloud applications’ performance on the per-hop
latency in the network-on-chip.

Figure 8 shows the performance of cloud applications for
networks with 1-, 2-, and 3-cycle delay per hop. All the
parameters of the processor that is running cloud applications
are identical to the baseline except for the per-hop latency.
All performance numbers are normalized to the baseline. As
expected, a decrease in per-hop latency translates into an
increase in system performance. While all of the applications
are sensitive to per-hop latency, Media Streaming shows the
highest sensitivity. For Media Streaming, reducing the per-
hop latency to 2 and 1 results in 21% and 50% higher system
performance, respectively. Across all applications, networks
with 2- and 1-cycle per-hop latency offer 11% and 23% higher
performance, as compared to 3-cycle per-hop networks.

These results clearly indicate high sensitivity of cloud
applications’ performance to the network latency. One reason
for such a high sensitivity of cloud applications to network
latency is the large instruction footprints of these applica-
tions [1]. As a result of having large instruction footprints,
a significant fraction of network traffic is due to instructions,



as shown in Figure 4. While OoO cores, like the one used
for the experiments, may overlap a data miss with some
useful work, they become idle as a result of an instruction
miss. This makes cloud applications extremely sensitive to L1
instruction miss penalty, which NOC is a major contributor
to [28]. Consequently, research on reducing network latency is
important for getting high performance on cloud applications.

V. CONCLUSIONS

Cloud applications, due to massive request-level parallelism,
benefit from execution on many-core processors. A key com-
ponent in a many-core processor is the network-on-chip. Using
a set of cloud applications and a cycle-accurate simulator, this
work studied the NOC characteristics of cloud applications
and the requirements that they place on networks-on-chip. Our
experiments showed that performance of cloud applications
running on many-core processors depends heavily on the char-
acteristics of the network-on-chip. We found that the majority
of on-chip traffic in cloud applications is due to instruction
misses. While the NOC bandwidth demand is moderate, due
to sensitivity of cloud applications’ performance on instruction
misses’ service time, these workloads are particularly sensitive
to NOC latency. Our findings showed that knobs like the
choice of routing algorithm and buffer size that are particularly
useful for applications with high bandwidth demands are
less effective in increasing performance of cloud applications.
On the other hand, techniques that reduce NOC latency can
significantly affect the performance of cloud applications.
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