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Non-Volatile Memory (NVM) technology is a promising solution to fulfill the ever-growing need
for higher capacity in the main memory of modern systems. Despite having many great features,
NVM’s poor write performance remains a severe obstacle, preventing it from being used as a DRAM
alternative in the main memory. Most of the prior work targeted optimizing writes at the main
memory side and neglected the decisive role of upper-level cache management policies on reducing
the number of writes.

In this paper, we propose a novel cache management policy that attempts to maximize write-
coalescing in the on-chip SRAM last-level cache (LLC), for the sake of reducing the number of
costly writes to the off-chip NVM. We decouple a few physical ways of the LLC to have a dedicated
and exclusive storage for the dirty blocks, after being evicted from the cache and before being sent
to the off-chip memory. By displacing dirty blocks in the exclusive storage, they are kept in the
cache based on their rewrite distance and are evicted when they are unlikely to be reused shortly.
To maximize the effectiveness of the exclusive storage, we manage it as a Cuckoo Cache to offer
associativity based on the various applications’ demands. Through detailed evaluations targeting
various single- and multi-threaded applications, we show that our proposal reduces the number of
writebacks, on average, by 21% over the state-of-the-art method and enhances both performance
and energy efficiency.
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1 INTRODUCTION
Non-volatile memories (NVMs), such as Phase Change Memory (PCM), Spin Torque Transfer
RAM (STT-RAM), and Resistive RAM (ReRAM), have emerged as promising solutions for
overcoming the scalability limitations of traditional SRAM and DRAM modules. Near-zero
leakage power and high density are the common features of these technologies [17, 19, 51,
62, 73], making them attractive for being used in the memory hierarchy of future chips.

Among traditional technologies, DRAM has a high leakage power [48, 52] and poor
technology scalability [26, 34, 42, 50]. Due to the large capacity of the main memory,
DRAM has been considered to be replaced with alternative storage technologies. PCM,
in particular, due to its zero standby power, high density, low read latency, and soft
error resilience is a suitable candidate for replacing or augmenting DRAM in the main
memory [3, 6, 35, 37, 45, 59, 61, 63, 85].

Despite having many great features, NVMs suffer from poor write performance and
endurance, which are the main limitations, preventing their widespread adoption. The poor
write performance and endurance of NVMs emanate from their intrinsic structures. For
example, the structure of PCM requires driving a large current for a long time to modify the
state of a cell, resulting in high latency and energy of write operations. Furthermore, writes
to PCM cells diminish the injection contacts, giving rise to the fact that its endurance is
limited to at most 109 writes per cell at the contemporary processes [7, 17, 71].

There is a large body of work that attempts to diminish the harmful effects of costly writes
in the context of NVMs. Wear leveling techniques (e.g., [46, 60, 85]) enhance the lifetime of
memory by balancing the distribution of writes. These methods remap the frequently written
cells to rarely written ones, and hence, mitigate the wear-out in hotspot cells of the memory.
Wear limiting techniques (e.g., [21, 38, 40, 76]) reduce the number of writes by coalescing
and/or canceling the writes in the memory. While these methods are useful, they concentrate
on the main memory itself, ignoring the management of upper-level caches. However, as
writes are sent from higher1 levels of the memory hierarchy, managing upper-level caches
can significantly affect the behavior of main memory writes.

On the other hand, some approaches [13, 18, 28, 79, 80, 84] exploit the locality of accesses
in the higher levels of memory hierarchy [9–11, 78] and attempt to reduce the number of
off-chip NVM writes by efficiently managing upper-level caches. These approaches usually
use predictors for identifying frequently written pieces of data and try to keep such data
in the cache, in an attempt to reduce the number of main memory writes. While these
techniques are effective at reducing the number of writes, their performance is significantly
restricted by the accuracy of their predictors. Whenever a wrong prediction is made, an
extra costly write is imposed on NVM or a block is unnecessarily kept in the cache for a
long time, wasting its limited capacity.

1We use the term higher (lower) levels of the memory hierarchy to refer to the levels closer to (further away
from) the core(s), respectively.
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This work aims to improve the effectiveness of the last-level cache (LLC) management in
the presence of NVM as the main memory of the system. Corroborating prior work [18, 79, 84],
we observe that a considerable fraction of dirty blocks is rewritten several accesses after their
eviction from the LLC. Based on this observation, we propose a cache management policy
that attempts to maximize write-coalescing in the on-chip SRAM caches, in an attempt
to reduce the number of costly off-chip NVM writes. Instead of employing a predictor for
identifying frequently written cache blocks, we propose to displace2 all dirty blocks in the
cache, until they are unlikely to be rewritten in the near future. For enabling displacement, we
decouple a few physical ways of the LLC and dedicate them exclusively to the dirty blocks
after the eviction, and before writeback. By displacing dirty blocks, we build a structure
that provides associativity based on the demand of various applications, and consequently,
dirty blocks would remain in the cache based on their rewrite distance3. Thus, many write
operations coalesce in the cache and writebacks are performed only when the blocks are not
likely to be rewritten shortly.

In this paper, we make the following contributions:
∙ We corroborate prior work [18, 79, 84] that a significant fraction of dirty blocks is

rewritten several accesses after the eviction from the LLC. We exploit this phenomenon
for reducing the number of NVM writes via further keeping the dirty blocks in on-chip
SRAM caches.

∙ We make the observation that the rewrite distance of cache blocks significantly vary
among applications. As such, we show that techniques that rely on fixed associativity
to further maintain dirty cache blocks are unable to considerably reduce the number
of memory writebacks.

∙ For overcoming the limitations of prior approaches, we propose a novel architecture
that attempts to maintain dirty blocks in the LLC based on the application’s rewrite
distance. We decouple a few physical ways of the LLC and keep dirty blocks there, after
the eviction and prior to writeback. By displacing blocks in the decoupled physical
ways, we provide associativity based on applications’ demands.

∙ Finally, we evaluate our proposal using various single- and multi-threaded applica-
tions and compare it against state-of-the-art proposals. We show that our proposal
substantially reduces the number of NVM writes (26% on average, and up to 87%)
and improves both performance and energy efficiency. Moreover, we demonstrate that
the proposed method outperforms the best-performing previous proposal by 21% on
reducing the number of writes while imposing less overhead.

2 MOTIVATION
Whenever a dirty block is evicted from the LLC, it should be written to the off-chip NVM.
As writes to NVM consume significant energy and lessen the lifetime of the cells, decreasing
the number of writes is crucial for energy-efficiency and durability. Moreover, long-latency
NVM writes can potentially interfere with performance-critical read requests, and hence,
diminish the overall system performance [4].

The write can be discarded if LLC chooses to evict a clean block instead of a dirty
block. However, naively evicting clean and keeping dirty blocks in the LLC would result
2Displacement is referred to changing the location of a piece of data in the storage. In this paper, we use
this term for referring to the event of changing the location of a block in the cache. As is discussed in this
paper, as well as in prior work [27, 66], displacement is feasible only when more than one hash function is
used for indexing the cache.
3By rewrite distance, we mean how many LLC accesses it takes for a dirty cache block to be written again.
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in substantial performance degradation, as evicted blocks may be re-referenced shortly. It
is useful if LLC seeks to maintain dirty blocks that will be re-referenced soon. This way,
multiple writes to the same block would coalesce in the LLC, and whenever the block is
unlikely to be re-referenced in the near future, a single writeback would be accomplished by
evicting the dirty block.

Figure 1 shows the cumulative distribution of LLC accesses between a writeback (i.e., a
dirty eviction) and the subsequent write to the same block in the LLC4. The figure implies
that for achieving a certain amount of write-coalescing (y-axis), how long, in the number
LLC accesses, the dirty blocks should be further kept in the LLC (x-axis). As shown, a
considerable fraction of writebacks is rewritten several accesses after their evictions. For
example, in calculix, 27% of dirty evictions are rewritten within hundred accesses following
the eviction. This phenomenon suggests that we can reduce a considerable fraction of
writebacks via moderately further keeping the dirty blocks in the LLC. The figure, moreover,
demonstrates that the rewrite distance of blocks drastically varies across workloads. For
example, coalescing half of the writes in blackscholes requires keeping the dirty blocks in
the LLC for 105 accesses after the eviction, while it is 106 in vips. This phenomenon also
suggests that the time that we should further keep the dirty blocks in the LLC, in order to
reduce the writebacks to a certain extent, differs across workloads.
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Fig. 1. The cumulative distribution of LLC accesses between a writeback and the subsequent write to
the same block in the LLC. The figure implies that for achieving a certain amount of write-coalescing
(y-axis), how long the dirty blocks should be further kept in the LLC (x-axis).

The discrepancy in rewrite distance of workloads calls for a general method for identifying
blocks that are likely to be rewritten in the near future. One solution is using a predictor to
classify evicted dirty blocks into two groups (i.e., “will be rewritten in the near future” or
“will be rewritten in the far future”), and then speculatively perform replacement decisions
based on the predictions. Such an approach, which is employed by many pieces of prior work
in different ways, however, suffers from fundamental obstacles:

(1) The performance of such a technique heavily depends on the accuracy of the predictions.
Whenever the prediction is wrong, an extra costly write would be imposed on NVM or

4The details of the methodology can be found in Section 4.

ACM Transactions on Design Automation of Electronic Systems, Vol. 24, No. 2, Article 16. Publication
date: January 2019.



Reducing Writebacks Through In-Cache Displacement 16:5

a block would unnecessarily be kept in the cache for a long time, wasting its limited
capacity. For workloads with little access predictability (e.g., workloads that create
their datasets on-the-fly during the execution [10]), significant performance degradation
is expected with these methods, as we show in this paper.

(2) Such binary classifications, even with perfect accuracy, are still incapable of choosing
the best victim upon cache replacements [30]. The problem is manifested when all of
the blocks in a given cache set are (even correctly) predicted to be rewritten in the
near future. In such situations, these techniques are unable to effectively choose the
best victim (i.e., the dirty block which will be rewritten later than the others) for
replacement.

(3) To enable the prediction, the history of access patterns should be maintained in
the system. As such, such an approach needs precious SRAM storage for saving the
metadata (e.g., 20 KB per core [79] or 34 KB [84] based on published numbers).

Instead of using a predictor, we propose to partition the LLC into two portions in order
to provide an exclusive storage for dirty blocks, after the eviction and prior to writeback.
Through displacing blocks in the exclusive storage, we provide associativity based on the
dissimilar rewrite distance of various applications, paving the way for keeping them in the
LLC, as long as they are prone to be rewritten shortly. This way, write operations are greatly
coalesced in the cache and writebacks are performed only when the blocks are not likely to
be rewritten in the near future.

3 THE PROPOSAL
We propose to partition the last-level cache into two parts where one part acts as a cache,
and the other part is used as a special storage for dirty blocks, after being evicted from
the cache and prior to being sent to the main memory. The LLC capacity is partitioned
into two portions: Normal Portion and Dirty Portion. For this purpose, we leverage way-
partitioning [16, 20, 22, 25, 57, 75, 77, 81], as it does not impose considerable hardware
cost5. Fortunately, modern processors have LLCs with numerous ways (e.g., 8–32), as such,
dedicating a few of these ways (say, 3) solely to dirty blocks does not result in substantial
degradation in the hit ratio of the LLC, as we show in this paper (see Section 5.1).

Figure 2 shows an overview of the proposed design. Cache ways are partitioned into normal
and dirty portions. The normal portion is the same as the baseline cache, but with fewer
ways. It inherits the replacement policy of the baseline cache, without any modification.
Dirty portion keeps dirty blocks that were evicted from the normal portion until they are
reused or written back. As the dirty portion is used for write coalescing, it should keep dirty
blocks based on their rewrite distance. Therefore, it should provide high associativity to
capture the rewrite distance of various workloads. To offer high associativity, we borrow
the ideas of Cuckoo Hashing [56] and Skewed-Associative Caches [72] to build a space- and

5Way-partitioning (sometimes called Column Caching [20]) was extensively utilized by many pieces of prior
work that primarily aimed to improve fairness and provide quality of service. In a typical way-partitioning,
cache ways are divided among applications, and each application is restricted to use only its assigned subset
of ways. While way-partitioning is simple and can be implemented with minimal logic, it reduces the effective
associativity of each partition, leading to performance degradation [67]. As such, way-partitioning is not
readily applicable in the context of writeback reduction (target of this work) since a naive implementation
not only does not reduce the writebacks but also is prone to increase them because of reducing the effective
associativity for dirty blocks. In this paper, we propose a novel architecture that partitions the cache into
two portions (normal and dirty) and uses the concept of displacement in order to provide high associativity
for the dirty portion while not significantly reducing the associativity of the normal portion.
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Fig. 2. Proposed design for managing the last-level cache. A portion of the LLC is dedicated to evicted
dirty blocks, as a temporary storage before being sent to the main memory.

energy-efficient highly-associative structure. Every way in the dirty portion has its own hash
function, distinct from others’, enabling displacement in ways. In what follows, we describe
the primary operations of the proposed design:

Lookup: The cache lookup is performed to determine whether the requested block is in
the cache or not. In the proposed design, all of the physical ways (both normal and dirty)
are searched in parallel. If the search results in a hit, the cache performs actions based on
the location at which the block is found. If the block is found in the normal portion, the
replacement status of the corresponding set is updated, quite similar to what happens in
the baseline cache (e.g., the block is migrated to the head of the LRU stack). However, if
the block is found in the dirty portion, it is removed from the dirty portion and is inserted
into the normal portion, as a new block. Consequently, the location of the block in the
dirty portion of the cache becomes free. If the search outcome is a miss, the block is simply
requested from the lower level of the memory hierarchy.

Insertion: Whenever a new block is going to be stored in the cache, the insertion procedure
is triggered. The incoming block is always inserted into the normal portion of the cache. The
corresponding set of the incoming block is determined by the hash function of the normal
portion, and then, the replacement policy (e.g., LRU) selects a victim to open a room for
the new block. Finally, the block is inserted into the cache, and the replacement status is
updated. Note that the replacement policy may decide to bypass the incoming block. In such
cases, no further action is taken place, and both portions remain unchanged.

Replacement: Inserting a new block into the normal portion of the cache may result in
evicting another block from the cache. For eviction, a candidate is determined based on the
replacement policy of the baseline cache (e.g., LRU). If the eviction candidate is clean, it is
safely removed from the cache. Otherwise, it is inserted into the dirty portion, in an attempt
to maintain the block in the cache for further use.

The dirty portion iteratively displaces blocks in order to provide associativity as high as
what is required to capture the rewrite distance of various applications. Whenever a dirty
block is evicted from the normal portion of the cache, it should be inserted into the dirty
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portion. The insertion procedure starts from one of the ways by determining the location
at which the new block should be installed using the hash function of the corresponding
way. Knowing the location, the content of that entry is evicted, and then the new block is
written there. If the evicted block is a valid block, the insertion procedure repeats for it in
a neighboring way (i.e., the evicted block is inserted into the adjacent way). This process
repeats until an insertion discovers an empty location or a stale block.

By a stale block, we refer to a block that has remained in the dirty portion of the cache
for a long time, and hence, is unlikely to be reused in the near future. We use the number of
displacements of blocks as a heuristic for discovering stale blocks: a block is a stale block
if it has been displaced in the cache more than a predefined threshold. At the hardware
level, we augment each block in the dirty portion of the cache with a counter, named
displacement counter, which indicates the number of times the block has been displaced
in the dirty portion. At insertion time, blocks whose displacement counters are greater
than a predefined threshold, named displacement threshold, are considered as stale blocks.
That is, upon displacing a valid block in the dirty portion, its displacement counter is
checked against the displacement threshold: if the displacement counter is greater than the
displacement threshold, the victim is safely discarded from the cache and written back to the
main memory, because it is a stale block. Otherwise, if the block is not stale, its displacement
counter is incremented, and it is inserted into a neighboring way. Stale blocks are not likely
to be reused as they have not been touched for a long period of time6. To have a regular
distribution of blocks across the ways, the insertion operation begins at the way in which
the last insertion has finished.

For avoiding livelock (i.e., infinite loops at insertion), a 4-bit counter, named livelock
counter, is equipped to track the number of times an insertion attempt passes the first way.
Whenever the counter overflows, the insertion is terminated, and the most recently displaced
block is discarded. However, we find that this event rarely occurs, as most of the times, a
stale or an empty entry is found in a few iterations. Figure 3 epitomizes the operations in
the dirty portion of the cache for various cases.

The proposed design adapts the (actual) associativity of the dirty portion based on an
application’s demand and is different from what has been proposed for ZCache [66], which
considers a fixed associativity. Moreover, the proposed design does not require a large
timestamp counter for each entry to implement complete LRU stack (i.e., Full LRU [66])
and does not lose accuracy because of shortening the timestamp counter to save area (i.e.,
Bucketed LRU [66]). The proposed design just requires few (e.g., 2) bits for each entry to
track displacement events, which grow drastically slower than the number of accesses.

4 EVALUATION METHODOLOGY
Table 1 summarizes key elements of our methodology, with the following sections detailing
the evaluated designs, technology parameters, workloads, and simulation infrastructure.

4.1 Evaluation Parameters
We evaluate our proposal on both single and multicore platforms. Cores perform an in-order
execution with fixed IPC = 1 for all instructions excluding memory operations. Cores are
equipped with 32 KB instruction and data caches. The LLC capacity is 512 KB per core
6This phenomenon is known as Pareto distribution [5]: The longer a block remains idle (not written to) after
a write, the longer it is expected to remain idle. Pareto distribution was extensively studied in computer
science and is observed in system load [70], process lifetime [32], web traffic [23], and so on. Recently, Khan
et al. [41] observed Pareto distribution in write requests of real-world applications.
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Fig. 3. Replacement process in the dirty portion of the cache. Considering that the displacement threshold
is 3: (I) The initial state of the entries are shown. Some of the entries are empty while others are valid.
Each entry is equipped with a displacement counter. (II) Block ‘X’ is dirty and now is evicted from the
normal portion of the cache. As a result, it should be inserted into the dirty portion. Using 𝑓1 hash
function, it finds the location at which it should be installed. Since that location is neither empty nor
contains a stale block, the insertion procedure should be continued after inserting ‘X.’ Therefore, ‘X’ is
stored in that location, and the previous content of the location is used for indexing the neighboring way.
As 𝑓2 hash function maps ‘B’ to an empty location, ‘B’ is stored, and the insertion procedure is finished.
(III) The state of the entries after inserting ‘X’ is shown. Since ‘X’ is a new entry, its displacement
counter is set to 0. Moreover, as ‘B’ experienced displacement in the previous insertion procedure, its
displacement counter is incremented. (IV) ‘Y’ is going to be inserted in the dirty portion. We start from
the way in which the last insertion has finished (i.e., second dirty way). 𝑓2 hash function maps ‘Y’ to a
location in which ‘E’ exists. ‘Y’ is installed, and since ‘E’ is not a stale block, it should be displaced. ‘E’
resumes the insertion procedure in the next way, and uses 𝑓3 to find the proper location. The location
indicated by 𝑓3 belongs to ‘G’ which again is not a stale block. Consequently, ‘E’ is installed, and the
insertion procedure continues for ‘G’ in the next way (i.e., the first dirty way). 𝑓1 maps ‘G’ to the
location at which ‘A’ lasts. The displacement counter of ‘A’ is 3. If we want to place ‘G’ at the location
of ‘A’ and then displace ‘A,’ the next displacement counter of ‘A’ will be 4, which is greater than the
displacement threshold. As a result, we consider ‘A’ as a stale block and safely discard it. That is, we
install ‘G’ in the cache and trigger a writeback operation for ‘A.’ (V) The state of the entries after
inserting ‘Y’ is shown. The displacement counter of ‘G’ and ’E’ is increased, and that of the ‘Y’ is set to
0.

Table 1. Evaluation parameters.

Parameter Value
Processing Nodes 1 and 16 Cores, 2 GHz, UltraSPARC III ISA, In-Order, IPC = 1 for Non-Memory Operations
L1-I/D Caches 32 KB, 2-Way, 1-Cycle Load-to-Use
L2 NUCA Cache Unified, 512 KB per Core, 1/4 Cycles Tag/Data Lookup Latency
Interconnect 4×4 2D Mesh, Three Cycles per Hop Latency
Main Memory 2-bit MLC PCM [14], 1/4 Memory Channels for 1/16 Cores, 8 KB Row Buffer
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and is shared among all cores. We set the number of physical ways of the LLC to eight, as it
is the lowest value in today’s commercial processors [1, 43]. The cache line size is 64 bytes.
The main memory is a 2-bit MLC PCM7. The delay and energy parameters of PCM is
modeled based on a real design [14]. Read requests are prioritized over writes in the memory
scheduling policy, as reads are more critical for performance.

4.2 Workloads
We include a wide variety of single- and multi-threaded workloads. We choose single-
threaded workloads from SPEC2006 [33] and multi-threaded programs from PARSEC [15].
The simulated workloads are listed in Table 2.

Table 2. Application parameters.

SPEC2006
bzip2 Compression and Decompression
calculix Classical Theory of Finite Elements
gromacs Simulation of Protein Lysozyme
lbm Lattice Boltzmann Method
mcf Vehicle Scheduling Problems
milc Simulation 4D Lattice Gauge Theory
xalancbmk XSLT Processor

PARSEC
blackscholes Portfolio Calculation Using PDE
dedup Data Stream Compression Kernel
facesim Human Face Modeling
fluidanimate Incompressible Fluid Simulation
freqmine Data Mining of the Frequent Pattern Growth Method
raytrace Real-Time Animations (e.g., Computer Games)
swaptions Portfolio Calculation Using Monte-Carlo Simulation
vips VASARI Image Processing System
x264 H.264/AVC Video Encoder

4.3 Simulation Infrastructure
We use an in-house execution-driven simulator, which faithfully models cache hierarchy
and interconnect’s latency. Cores execute system- and user-level instructions, generated by
Simics [2]. DRAMSim2 [65] is modified to model PCM and is used for simulating the main
memory.

We simulate all applications with their maximum-size datasets (i.e., reference/simlarge
input sets for SPEC/PARSEC workloads). For single-threaded workloads, we run 4 billion
clock cycles to reach a steady-state, then collect measurements for the subsequent 2 billion
clock cycles. We also launch simulations for multi-threaded workloads and run 8 billion
clock cycles for warming the large last-level cache and other components before collecting
measurements for the next 8 billion clock cycles.

7In this paper, to be in-line with most of the prior work in the literature, we evaluate our technique when
the PCM is used as the main memory. However, all of the discussions are also true when another NVM
technology is used as the main memory (e.g., STT-RAM as the main memory [44]).
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4.4 Cache Management Schemes
We evaluate and compare four systems, as follows:

Baseline: Last-level cache does not consider read-write disparity and replaces blocks based
on their recency (i.e., LRU).

Writeback-Aware Dynamic Cache Management: WADE [79] is the state-of-the-art NVM-
aware cache management policy and is implemented on top of the baseline. It employs a
predictor for identifying frequently written cache lines and attempts to minimize the eviction
of such lines, as a way to coalesce writes and reduce the number of writebacks. We implement
WADE including the dueling policies and the prediction configuration based on the original
proposal. The total storage overhead of this method is 20 KB per core.

Hybrid-Memory–Aware Cache Partitioning: HAP [80] is a recently-proposed approach for
managing the LLC in the context of hybrid memory systems (i.e., systems that use more
than one technology for building the main memory, e.g., simultaneous use of DRAM and
PCM). Meanwhile, with slight modifications, it can be evaluated in our simulated system.
Similar to prior proposals [13, 28], HAP grants a second chance to dirty blocks, in an attempt
to maintain them in the cache to increase write-coalescing. That is, the first time a dirty
block is chosen as the victim for eviction, it survives: it is not evicted, and instead, the
next block from the LRU stack is evaluated for eviction. However, if it is not used until the
subsequent replacement evaluation, it is discarded from the cache. As each cache block is
required to maintain only a single bit to indicate if the block has benefited from its second
chance, the total area overhead of this method is low (1 KB per core).

In-Cache Displacement: Our proposal for managing the last-level cache is In-Cache Dis-
placement (ICD). We partition cache ways into normal and dirty portions. The dirty portion
uses displacement to relocate blocks for offering associativity as high as necessary to capture
the rewrite distance of different workloads. We set the configuration of ICD based on the
sensitivity analysis (Section 5.1).

5 EVALUATION RESULTS
5.1 Sensitivity Analysis
Dirty Ways. The effectiveness of ICD at reducing the number of writebacks depends on the
number of physical ways dedicated to the dirty portion. Figure 4 (left) shows the sensitivity
of the number of writebacks to the number of dirty ways8. As the number of ways increases,
the residence time of dirty blocks in the cache grows, and hence, the probability of coalescing
increases. As such, a significant number of writes coalesce, which leads to a reduction in
the number of costly writebacks. On the other hand, Figure 4 (right) shows the read hit
ratio of the last-level cache as the number of dirty ways varies. Not surprisingly, dedicating
more ways to the dirty portion lowers the total read hit ratio of the cache. As the total
number of physical ways of the cache is constant, increasing the number of dirty ways implies
decreasing the number of normal ways. By reducing the number of normal ways, the read
miss ratio of the cache increases, as there are fewer possible locations for blocks on which
8In this experiment, to isolate the effect of the displacement threshold, we set its value to a large number.
Moreover, for the same purpose, we disable the livelock counter of the proposed design.
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Fig. 4. The sensitivity of writebacks and read hit ratio of workloads to the number of ways dedicated to
the dirty portion. Note that in the proposed technique, one dirty way is not possible, as displacement
requires more than a single hash function. Dedicating all ways to the dirty portion is also impossible
since we always insert the blocks into the normal portion of the cache.

the normal cache operations are performed. To take both writebacks and read hit ratio into
consideration, we devote three ways to the dirty portion and use the rest of the ways for the
normal operations of the cache9. Beyond three dirty ways, we observe diminishing writeback
reduction, which indicates that merely three different hash functions are sufficient to provide
a highly-associative structure for dirty blocks, capturing their various rewrite distances.

Displacement Threshold. Another parameter of ICD that can affect its efficacy is the
displacement threshold. Displacement threshold is used to bound the number of displacements
that each block experiences in the dirty portion. A small value for the displacement threshold
may result in early eviction of useful blocks, while a large value can result in unnecessary
displacements of stale blocks. Figure 5 shows the sensitivity of the number of writebacks
(left) and the average number of block relocations (right) to the displacement threshold.
Beyond three, there is a negligible reduction in the number of writebacks, at the same time,
the average number of displacements grows linearly with the increase in the displacement
threshold, causing unnecessary energy usage. Therefore, we limit the displacement threshold
of each block in the dirty portion to three.

5.2 Writeback Reduction
To demonstrate the effectiveness of the proposed technique, Figure 6 shows the number of
writebacks of various methods, normalized to that of the baseline LRU. As the number of
writebacks directly influences the endurance and energy usage of PCM, its reduction is crucial
for achieving efficiency. As clearly shown, except for few workloads, ICD significantly decreases
the number of writebacks through maximizing write-coalescing. Compared to the baseline,
ICD reduces the number of writebacks up to 87% and 26% on average. ICD outperforms

9Note that, dedicating three of the physical ways to the dirty portion of the cache does not mean that our
design divests read requests of three cache ways. As discussed in Section 3, upon each request, all cache
ways, either normal or dirty, are searched in parallel. That is, a read request may hit in the dirty portion of
the cache, as well as the normal of the cache.
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Fig. 5. The sensitivity of writebacks and movements of blocks to the upper-bound displacement limit.

WADE, the second best-performing method for single-threaded workloads, by 23%/19% in
single-/multi-threaded workloads, respectively. ICD also outperforms HAP, the second best-
performing method for multi-threaded workloads, by 31%/13% in single-/multi-threaded
applications, respectively.

The efficiency of WADE is significantly restricted by the accuracy of its predictions.
Whenever a wrong prediction is made, a costly write is imposed on the PCM, or a useless
block remains in the cache for a long time. The problem exacerbates as WADE favors
area-saving (i.e., reducing its area overhead) over prediction accuracy. For example, instead
of allocating an entry in the predictor for each block, WADE offers the same prediction for
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Fig. 6. The number of writebacks normalized to the baseline LRU.
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many blocks, with the justification that they share an identical spatial region and exhibit the
same behavior with respect to the write frequency, which is not always the case. Moreover,
our investigations reveal that the high start-up latency of WADE is its another shortcoming.
WADE requires observing multiple writebacks for a block to classify it as a frequently-written
block, and filter its future writebacks. However, in some workloads, a significant number of
writebacks repeat just a few times. For instance, in calculix, 72% of blocks are written
back only twice over the course of the execution of the application, which WADE can do
nothing for.

HAP, like WADE, does not consider the various rewrite distance of cache blocks. If the
rewrite distance of a cache block is larger than the access frequency of the corresponding
cache set, it is inevitably evicted before observing the subsequent access. Therefore, HAP
(and other similar approaches [13, 28]) is able to coalesce only writes that happen close to
each other in time. Meanwhile, ICD provides exclusive and highly-associative storage for
dirty blocks that enables it to coalesce writes with various distances in time (cf. Figure 1).

5.3 Main Memory Energy
Figure 7 shows the energy usage of the PCM main memory under various techniques for
managing LLC, normalized to that of the baseline system. As writes to the PCM are more
energy-consuming than reads, reducing writebacks may lead to consuming less energy in the
main memory. ICD outperforms both WADE and HAP, reducing the main memory energy
usage by up to 15%. In some of the workloads, even though the number of writebacks has
been reduced by an LLC management scheme, the memory energy usage has been increased
(e.g., raytrace with WADE). The main reason is the increased number of read requests
to the PCM because of the reduction in the LLC read hit ratio. Usually, the evaluated
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Fig. 7. The energy of PCM normalized to the baseline system.
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methods sacrifice the read hit ratio of the LLC, to a certain extent, to further keep the
dirty blocks in the cache. However, if the read hit ratio reduction is significant, there will be
massive pressure on the main memory for serving read misses, which can potentially offset
the benefits of writeback reduction (cf. Section 5.1). On average, ICD decreases the main
memory energy usage by 6%/3% more than WADE/HAP.

5.4 Performance Analysis
Writebacks are not latency-sensitive operations by themselves, as they are usually served off
the critical path of the execution [8]. Therefore, reducing or accelerating writebacks would
not usually affect the performance of processors. However, frequent memory writes can delay
read requests that are crucial for performance, resulting in performance degradation [4].

Figure 8 shows the performance of various cache management techniques, normalized
to that of the baseline system. ICD either outperforms or matches the performance of the
best of the baseline, WADE, and HAP across all workloads. On average and for single-
threaded workloads, ICD improves the performance by 2%. In comparison, the average
performance is almost unchanged with WADE and HAP. For multi-threaded workloads,
the performance improvement of ICD is 12% on average (up to 41%), which is 13%/7%
higher than performance improvement of WADE/HAP. For multi-threaded workloads, the
performance improvement of ICD is more meaningful because of higher memory bandwidth
utilization. Multicore processors are commonly bandwidth-limited [8, 12, 49], due to the
insufficient number of memory channels, which itself is a result of poor pin count scalability
of chips [36, 64]. In such systems, when PCM is used as the main memory, a long latency
writeback caused by a core can induce significant contention with read accesses of other cores,
leading to a notable performance penalty. Fortunately, ICD decreases such contentions by
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significantly reducing the number of writebacks, which results in a considerable performance
improvement.

5.5 Overheads
As the displacement threshold in the proposed technique is three, ICD requires only two bits
per each block in the dirty portion to track the number of displacements. Nevertheless, as
the notion of set does not exist in the dirty portion, blocks do not carry their LRU-recency
bits when they are transferred from the normal to the dirty portion. It means that cache
lines of the dirty portion (without their displacement counter) are three bits10 shorter than
that of the baseline. Consequently, 2-bits-per-line storage requirement of ICD is offset by its
3-bits-per-line storage reduction. Furthermore, the hash functions that ICD practices are
extremely low-cost and can be implemented with several XOR gates [69].

Displacing cache blocks in the dirty portion incurs energy overhead for the proposed
design. Still, the energy usage of relocating blocks in the on-chip SRAM is far less than the
energy of writes to the off-chip PCM. At 32 nm technology, a displacement consumes about
115𝑝𝐽 (based on CACTI [55]), while a single writeback imposes 5.12𝑛𝐽–140𝑛𝐽 depending on
the written value [14]. On average across all workloads, the on-chip energy overhead of ICD
accounts for 8% of its off-chip energy reduction.

Finally, as displacements are performed off the critical path of execution, they do not
negatively affect the performance of the system. Displacements occur (1) when a request hits
in the dirty portion of the cache, or (2) at a cache miss which triggers a dirty eviction from
the normal portion of the cache. In both cases, the latency of displacements is not exposed
to the performance-critical cache access. Whenever a read request hits in the dirty portion,
first, the demanded data is sent to the corresponding L1, and then, the block is inserted into
the normal portion of the cache, which may trigger several displacements. Displacements
also do not stall the subsequent read requests, as reads are prioritized over displacements
(and writes) in cache scheduling policies. Furthermore, cache misses experience delays much
larger than the delay of displacements. Upon each LLC miss, the eviction candidate is
determined based on the replacement policy of the normal portion. Concurrent with serving
the miss, displacements are done, if the eviction candidate is a dirty line. As off-chip accesses
impose long latency (120𝑛𝑠 at zero-load [14]), the latency of displacements (0.4𝑛𝑠 per single
displacement) is completely hidden.

5.6 Comparison Against ZCache
The dirty portion of ICD has similarities with ZCache design from Sanchez and Kozyrakis [66].
ZCache, like ICD, uses different hash functions for physical ways, in order to provide high
associativity via displacement. However, ZCache does not consider the read-write discrepancy
in cache replacement and replaces the blocks solely based on their recency. Moreover,
its replacement procedure (e.g., insertion of a new block, displacing blocks, manipulating
metadata) is entirely different from that of ICD, as we discussed in Section 3.

Figure 9 shows the number of writebacks of ICD and ZCache, normalized to that of the
baseline system. For ZCache, the actual associativity of the cache is 52, in which, each block
contains an 8-bit timestamp counter for maintaining recency information, based on the
original proposal [66]. The storage overhead of ZCache over the baseline cache is 5 KB and
80 KB in single and multicore systems, respectively.

10As the baseline cache is 8-way set-associative, each cache line keeps three bits for maintaining the LRU
stack.
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Fig. 9. The comparison of ICD and ZCache w.r.t. the number of writebacks. All numbers are normalized
to the number of writebacks with the baseline system.

As shown in the figure, ZCache is unable to reduce the number of dirty evictions. This is
because of the fact that ZCache is apathetic about clean-/dirtiness of blocks and replaces
them only based on their recency. For several workloads, ZCache, not only does not decrease
writebacks but also increases them, mainly because of trading early eviction of dirty blocks
for further keeping recent clean blocks. On average and across all workloads, ZCache increases
the number of writebacks by 9%, as compared to the baseline, which is 35% higher than the
writeback traffic of ICD.

6 RELATED WORK
The discrepancy in the read-write cost of NVM has motivated a large body of research
to overcome the performance, energy, and endurance limitations of writes. Wear leveling
techniques attempt to improve the lifetime of memory by adjusting the distribution of writes.
These techniques remap the frequently written cells to seldom written ones, and hence,
alleviate the wear-out in hotspot cells of the memory. Start-Gap [60] uniforms physical
layout of memory by regularly shifting the address-to-frame mapping. Segment swapping [46]
performs the wear leveling at the granularity of large memory segments (e.g., 1 MB). In the
proposed method, memory controllers maintain the record of writes of each segment, and
periodically, swap segments with high and low number of writes. Zhou et al. [85] proposed to
perform wear leveling in various layers for the sake of architecting a high-endurance memory.
The scheme transfers bits in a line, changes lines in a segment, and swap segments in the
memory for the purpose of maximizing write balancing.

Wear limiting approaches attempt to lessen the number of writes through mixing and/or
dropping the writes in the memory. Joo et al. [40] proposed read-before-write to eliminate the
expenses of redundant writes. Before each write, the current value of the cell is determined
by a read operation, and the new value is compared against it. Finally, the write operation
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(i.e., SET/RESET pulse) is performed only for cells with different values. Flip-N-Write [21]
leverages the idea of bus-inverting [76] to further reduce the number of writes. Upon writing
a word, the Hamming distance (i.e., the number of bits that differ) of the new value is
checked against the previous value. If the Hamming distance is greater than half of the word
size, the data is inverted and then is written to the NVM. Otherwise, the new value is stored
without changes. Moreover, a single bit that indicates if the word is inverted is stored beside
the data.

Mellow Write [83] is a novel approach to reduce the harmful effects of NVM writes. Based
on the observation that slow writes result in less power dissipation and higher endurance,
writes that are not likely to affect performance are written at a slow rate. Data compression,
as a technique for mitigating the negative effect of NVM writes, was also studied in the
literature [39]. Our method seeks to reduce the number of writebacks originated from the
LLC and is orthogonal to the above approaches that target memory-side optimizations.

Alternatively, some other pieces of prior work attempt to reduce the adverse effect of
off-chip NVM writes by managing on-chip SRAM caches. WCP [84] propose to partition the
LLC capacity among several applications that are running on a multicore processor based
on their generated writebacks. WCP favors producing balanced traffic on off-chip NVM and
minimizing write-caused interference among applications. This method requires about 34 KB
of storage per core to adjust its run-time decisions and applies only to multicore systems
with LRU replacement policy. In this paper, we proposed a metadata-free LLC management
that reduces the number of writebacks in both single and multicore processors, regardless of
the number of different applications that are executed on cores, while supporting any cache
management policy.

Managing on-chip caches in the presence of hybrid memories (i.e., leveraging both DRAM
and NVM in a single system) [18, 80, 82] has been studied in the literature. These methods
consider the disparity of DRAM and NVM when managing the blocks of each type in the
LLC. ICD can be incorporated into such schemes for efficiently managing writeback-sensitive
cache blocks (i.e., blocks that belong to NVM). Operating and controlling DRAM as a
cache of NVM [47, 53, 61] was proposed for exploiting benefits of both classes of memories.
Our proposal can be used with such methods to increase efficiency, as it aims at managing
writebacks at higher levels of the memory hierarchy.

Cuckoo hashing was proposed by Pagh and Rodler [56] for building space-efficient hash
tables. Though Cuckoo hashing has been mostly studied as a technique for software hash ta-
bles [54], hardware variants have been proposed to implement lookup tables in IP router [24],
highly-associative cache [66], and scalable directory [27, 68]. Various proposals have pointed
out the need for low-conflict and storage-efficient structures. Structures that rely on displace-
ment were proposed for increasing area efficiency [31] and reducing conflicts [74]. Fotakis et
al. [29] generalized Cuckoo hash for enhancing storage utilization. Panigrahy proposed to
store multiple elements per bucket to raise Cuckoo hash space utilization [58]. ICD leverages
Cuckoo hashing for managing a part of the LLC in order to reduce the number of writebacks
by providing a highly-associative storage for dirty blocks.

7 CONCLUSION
Poor write performance of NVMs has been recognized as a major drawback. Therefore,
a vast body of research targeted reducing the negative effect of writes on latency, energy,
and endurance of NVMs, enabling them to replace unscalable DRAM in the main memory.
Among various techniques, cache management methods can significantly reduce the number
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of main memory writes because caches can exploit the high locality which exists in write
access patterns.

In this paper, we proposed a low-cost cache management policy that attempts to maximize
write-coalescing for the purpose of reducing costly writebacks. We showed that our proposal
reduces the number of writebacks by up to 87% and outperforms the state-of-the-art designs.
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