
52

Evaluation of Hardware Data Prefetchers
on Server Processors
MOHAMMAD BAKHSHALIPOUR, Sharif University of Technology

SEYEDALI TABAEIAGHDAEI, Sharif University of Technology

PEJMAN LOTFI-KAMRAN, Institute for Research in Fundamental Sciences (IPM)

HAMID SARBAZI-AZAD, Sharif University of Technology & Institute for Research in Fundamental

Sciences (IPM)

Data prefetching, i.e., the act of predicting application’s future memory accesses and fetching those that are

not in the on-chip caches, is a well-known and widely-used approach to hide the long latency of memory

accesses. �e fruitfulness of data prefetching is evident to both industry and academy: nowadays, almost

every high-performance processor incorporates a few data prefetchers for capturing various access pa�erns

of applications; besides, there is a myriad of proposals for data prefetching in the research literature, where

each proposal enhances the e�ciency of prefetching in a speci�c way.

In this survey, we evaluate the e�ectiveness of data prefetching in the context of server applications and

shed light on its design trade-o�s. To do so, we choose a target architecture based on a contemporary server

processor and stack various state-of-the-art data prefetchers on top of it. We analyze the prefetchers in

terms of the ability to predict memory accesses and enhance overall system performance, as well as their

imposed overheads. Finally, by comparing the state-of-the-art prefetchers with impractical ideal prefetchers,

we motivate further work on improving data prefetching techniques.

CCS Concepts: •General and reference →Surveys and overviews; Evaluation; •Computer systems
organization →Architectures;

Additional Key Words and Phrases: Data Prefetching, Scale-Out Workloads, Server Processors, and Spatio-

Temporal Correlation.

ACM Reference format:
Mohammad Bakhshalipour, Seyedali Tabaeiaghdaei, Pejman Lot�-Kamran, and Hamid Sarbazi-Azad. 2019.

Evaluation of Hardware Data Prefetchers on Server Processors. ACMComput. Surv. 52, 3, Article 52 (June 2019),

29 pages.

DOI: h�ps://doi.org/10.1145/3312740

New Paper, Not an Extension of a Conference Paper.

Author’s addresses: Mohammad Bakhshalipour and Seyedali Tabaeiaghdaei, Department of Computer Engineering, Sharif

University of Technology; Pejman Lot�-Kamran, School of Computer Science, Institute for Research in Fundamental

Sciences (IPM); Hamid Sarbazi-Azad, Department of Computer Engineering, Sharif University of Technology and School of

Computer Science, Institute for Research in Fundamental Sciences (IPM).

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and

the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permi�ed. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 ACM. 0360-0300/2019/6-ART52 $15.00

DOI: h�ps://doi.org/10.1145/3312740

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

52:2 M. Bakhshalipour et al.

1 INTRODUCTION
Server workloads like Media Streaming and Web Search serve millions of users and are considered

an important class of applications. Such workloads run on large-scale data-center infrastructures

that are backed by processors which are essentially tuned for low latency and quality-of-service

guarantees. �ese processors typically include a handful of high-clock frequency, aggressively-

speculative, and deeply-pipelined cores so as to run server applications as fast as possible, satisfying

end-users’ latency requirements [34, 36, 39, 71, 74, 80, 81].

Much to processor designer’s chagrin, bo�lenecks in the memory system prevent server pro-

cessors from ge�ing high performance on server applications. As server workloads operate on a

large volume of data, they produce active memory working sets that dwarf the capacity-limited

on-chip caches of server processors and reside in the o�-chip memory; hence, these applications

frequently miss the data in the on-chip caches and access the long-latency memory to retrieve

it. Such frequent data misses preclude server processors from reaching their peak performance

because cores are idle waiting for the data to arrive [36, 37, 40, 61, 62, 74, 109].

System architects have proposed various strategies to overcome the performance penalty of

frequent memory accesses. Data Prefetching is one of these strategies that has demonstrated

signi�cant performance potentials. Data prefetching is the art of predicting future memory accesses

and fetching those that are not in the cache before a core explicitly asks for them in order to hide
the long latency of memory accesses. Nowadays, virtually every high-performance computing chip

uses a few data prefetchers (e.g., Intel Xeon Phi [102], IBM Blue Gene/Q [43], AMD Opteron [24],

and UltraSPARC III [45]) to capture regular and/or irregular memory access pa�erns of various

applications. In the research literature, likewise, there is a myriad of proposals for data prefetching,

where every proposal makes the prefetching more e�cient in a speci�c way.

In this study, we assess the e�ectiveness of hardware data prefetchers in the context of server

applications. We stack recent, as well as classic, hardware data prefetchers on a system which is

modeled based on a modern high-end server processor. �en we perform a detailed analysis of

every prefetcher and quantify its ability at predicting cache misses and improving overall system

performance, as well as its imposed overheads. In a nutshell, we make the following contributions

in this paper:

• We characterize memory access pa�erns of server applications and show how these pa�erns

lead to di�erent classes of correlations, from which data prefetchers can predict future

memory accesses.

• We implement state-of-the-art hardware data prefetchers in the research literature for

evaluating their usefulness at covering data misses and boosting the performance of server

workloads.

• We perform a sensitivity analysis for every data prefetcher to shed light on how much

silicon real estate it needs to be able to predict a reasonable number of cache misses.

• We highlight the overheads of every data prefetching technique and discuss the feasibility

of implementing it in modern server processors.

• We compare the state-of-the-art data prefetchers with ideal data prefetchers and show that,

notwithstanding four decades of research on hardware data prefetching, there is still a

signi�cant room for improvement.

�e rest of this paper is organized as follows. Section 2 brie�y surveys non-hardware-data

prefetching strategies that target eliminating or reducing the negative e�ect of data misses and

highlights their limitations. Section 3 presents a short background on various classes of hardware

data prefetching techniques and discusses their opportunities and limitations. Section 4 describes

the mechanism of several state-of-the-art data prefetchers that we evaluate in this survey. Section 5

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

Evaluation of Hardware Data Prefetchers on Server Processors 52:3

details the evaluation methodology, and Section 6 discusses the outcomes of the evaluation. Section 7

touches on techniques that can be used with hardware data prefetchers to maximize their e�ciency.

Finally, Section 8 concludes the paper and draws a roadmap for future research in hardware data

prefetching.

2 NON-HARDWARE DATA PREFETCHING
Progress in technology fabrication accompanied by circuit-level and microarchitectural advance-

ments have brought about signi�cant enhancements in the processors’ performance over the

past decades. Meanwhile, the performance of memory systems has not held speed with that of

the processors, forming a large gap between the performance of processors and memory sys-

tems [4, 41, 42, 108, 114]. As a consequence, numerous approaches have been proposed to enhance

the execution performance of applications by bridging the processor-memory performance gap.

Hardware data prefetching is just one of these approaches. Hardware data prefetching bridges

the gap by proactively fetching the data ahead of the cores’ requests in order to eliminate the idle

cycles in which the processor is waiting for the response of the memory system. In this section, we

brie�y review the other approaches that target the same goal (i.e., bridging the processor-memory

performance gap) but in other ways.

Multithreading [86] enables the processor to be�er utilize its computational resources, as

stalls in one thread can be overlapped with the execution of other thread(s) [5, 25, 33, 63, 64, 96].

Multithreading, however, only improves throughput and does nothing for (or even worsens) the

response time [42, 72, 74], which is crucial for satisfying the strict latency requirements of server

applications.

�read-Based Prefetching techniques [22, 23, 38, 59, 70] exploit idle thread contexts or distinct

pre-execution hardware to drive helper threads that try to overlap the cache misses with speculative

execution. Such helper threads, formed either by the hardware or by the compiler, execute a piece

of code that prefetches for the main thread. Nonetheless, the additional threads and fetch/execution

bandwidth may not be available when the processor is fully utilized. �e abundant request-level

parallelism of server applications [36, 74] makes such schemes ine�ective in that the helper threads

need to compete with the main threads for the hardware context.

Runahead Execution [84, 85] makes the execution resources of a core that would otherwise

be stalled on an o�-chip cache miss to go ahead of the stalled execution in an a�empt to discover

additional load misses. Similarly, Branch Prediction Directed Prefetching [58] utilizes the

branch predictor to run in advance of the executing program, thereby prefetching load instructions

along the expected future path. Such approaches, nevertheless, are constrained by the accuracy

of the branch predictor and can cover simply a portion of the miss latency, since the runahead

thread/branch predictor may not be capable of executing far ahead in advance to completely hide

a cache miss. Moreover, these approaches can only prefetch independent cache misses [44] and

may not be e�ective for many of the server workloads, e.g., OLTP and Web applications, that are

characterized by long chains of dependent memory accesses [10, 93].

On the so�ware side, there are e�orts to re-structure programs to boost chip-level Data Sharing
and Data Reuse [55, 68] in order to decrease o�-chip accesses. While these techniques are useful

for workloads with modest datasets, they fall short of e�ciency for big-data server workloads,

where the multi-gigabyte working sets of workloads dwarf the few megabytes of on-chip cache

capacity. �e ever-growing datasets of server workloads make such approaches unscalable. So�-
ware Prefetching techniques [18, 20, 77, 95, 97, 117] pro�le the program code and insert prefetch

instructions to eliminate cache misses. While these techniques are shown to be bene�cial for

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

52:4 M. Bakhshalipour et al.

small benchmarks, they usually require signi�cant programmer e�ort to produce optimized code to

generate timely prefetch requests.

Memory-Side Prefetching techniques [46, 103, 115] place the hardware for data prefetching

near DRAM, for the sake of saving precious SRAM budget. In such approaches (e.g., [103]),

prefetching is performed by a user thread running near the DRAM, and prefetched pieces of

data are sent to the on-chip caches. Unfortunately, such techniques lose the predictability of

core requests [82] and are incapable of performing cache-level optimizations (e.g., avoiding cache

pollution [106]).

3 BACKGROUND
In this section, we brie�y overview a background on hardware data prefetching and refer the reader

to prior work [35, 82] for more details. For simplicity, in the rest of the paper, we use the term

prefetcher to refer to the core-side hardware data prefetcher.

3.1 Predicting Memory References
�e �rst step in data prefetching is predicting future memory accesses. Fortunately, data accesses

demonstrate several types of correlations and localities, that lead to the formation of pa�erns
among memory accesses, from which data prefetchers can predict future memory references. �ese

pa�erns emanate from the layout of programs’ data structures in the memory, and the algorithm

and the high-level programming constructs that operate on these data structures.

In this work, we classify the memory access pa�erns of applications into three distinct categories:

(1) strided, (2) temporal, and (3) spatial access pa�erns.

3.1.1 Strided Accesses. Strided access pa�ern refers to a sequence of memory accesses in which

the distance of consecutive accesses is constant (e.g., {A,A + k,A + 2k, . . . }). Such pa�erns are

abundant in programs with dense matrices and frequently come into sight when programs op-

erate on multi-dimensional arrays. Strided accesses also appear in pointer-based data structures

when memory allocators arrange the objects sequentially and in a constant-size manner in the

memory [26].

3.1.2 Temporal Address Correlation. Temporal address correlation [10] refers to a sequence of

addresses that favor being accessed together and in the same order (e.g., if we observe {A,B,C,D},
then it is likely for {B,C,D} to follow {A} in the future). Temporal address correlation stems

fundamentally from the fact that programs consist of loops, and is observed when data structures

such as lists, arrays, and linked lists are traversed. When data structures are stable [19], access

pa�erns recur, and the temporal address correlation is manifested [10].

3.1.3 Spatial Address Correlation. Spatial address correlation [11] refers to the phenomenon

that similar access pa�erns occur in di�erent regions of memory (e.g., if a program visits locations

{A,B,C,D} of Page X , it is probable that it visits locations {A,B,C,D} of other pages as well).

Spatial correlation transpires because applications use various objects with a regular and �xed

layout, and accesses reappear while traversing data structures [11].

3.2 Prefetching Lookahead
Prefetchers need to issue timely prefetch requests for the predicted addresses. Preferably, a

prefetcher sends prefetch requests well in advance and supply enough storage for the prefetched

blocks in order to hide the entire latency of memory accesses. An early prefetch request may

cause evicting a useful block from the cache, and a late prefetch may decrease the e�ectiveness of

prefetching in that a portion of the long latency of a memory access is exposed to the processor.

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

Evaluation of Hardware Data Prefetchers on Server Processors 52:5

Prefetching lookahead refers to how far ahead of the demand miss stream the prefetcher can send
requests. An aggressive prefetcher may o�er a high prefetching lookahead (say, eight) and issue

many prefetch requests ahead of the processor to hide the entire latency of memory accesses;

on the other hand, a conservative prefetcher may o�er a low prefetching lookahead and send a

single prefetch request in advance of the processor’s demand to avoid wasting resources (e.g., cache

storage and memory bandwidth). Typically, there is a trade-o� between the aggressiveness of

a prefetching technique and its accuracy: making a prefetcher more aggressive usually leads to

covering more data-miss–induced stall cycles but at the cost of fetching more useless data.

Some pieces of prior work propose to dynamically adjust the prefetching lookahead [58, 65, 106].

Based on the observation that the optimal prefetching degree is di�erent for various applications

and various execution phases of a particular application, as well, these approaches employ heuristics

to increase or decrease the prefetching lookahead. For example, SPP [65] monitors the accuracy of

issued prefetch requests and reduce the prefetching lookahead if the accuracy becomes smaller

than a prede�ned threshold.

3.3 Location of Data Prefetcher
Prefetching can be employed to move the data from lower levels of the memory hierarchy to any

higher level
1
. Prior work used data prefetchers at all cache levels, from the primary data cache to

the shared last-level cache.

�e location of a data prefetcher has a profound impact on its overall behavior [78]. A prefetcher

in the �rst-level cache can observe all memory accesses, and hence, is able to issue highly-accurate

prefetch requests, but at the cost of imposing large storage overhead for recording the metadata

information. In contrast, a prefetcher in the last-level cache observes the access sequences that

have been �ltered at higher levels of the memory hierarchy, resulting in lower prediction accuracy,

but higher storage e�ciency.

3.4 Prefetching Hazards
A naive deployment of a data prefetcher not only may not improve the system performance but

also may signi�cantly harm the performance and energy-e�ciency [8]. �e two well-known major

drawbacks of data prefetching are (1) cache pollution and (2) o�-chip bandwidth overhead.

3.4.1 Cache Pollution. Data prefetching may increase the demand misses by replacing useful

cache blocks with useless prefetched data, harming the performance. Cache pollution usually

occurs when an aggressive prefetcher exhibits low accuracy and/or when prefetch requests of

a core in a many-core processor compete for shared resources with demand accesses of other

cores [31].

3.4.2 Bandwidth Overhead. In a many-core processor, prefetch requests of a core can delay

demand requests of another core because of contending for memory bandwidth [31]. �is interfer-

ence is the major obstacle of using data prefetchers in many-core processors, and the problem gets

thornier as the number of cores increases [29, 66].

3.5 Placing Prefetched Data
Data prefetchers usually place the prefetched data into one of the following two structures: (1) the

cache itself, and (2) an auxiliary bu�er next to the cache. In case an auxiliary bu�er is used for the

1
We use the term higher (lower) levels of the memory hierarchy to refer to the levels closer to (further away from) the core,

respectively.

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

52:6 M. Bakhshalipour et al.

prefetched data, demand requests �rst look for the data in the cache; if the data is not found, the

auxiliary bu�er is searched before sending a request to the lower levels of the memory hierarchy.

Storing the prefetched data into the cache lowers the latency of accessing data when the prediction

is correct. However, when the prediction is incorrect or when the prefetch request is not timely

(i.e., too early), having the prefetched data in the cache may result in evicting useful cache blocks.

4 STATE-OF-THE-ART DATA PREFETCHERS
In this section, we introduce state-of-the-art data prefetchers and describe their mechanism. Based

on the type of access pa�erns they capture, we classify the design space of hardware data prefetchers

into three categories.

4.1 Stride Prefetching
Stride prefetchers are widely used in commercial processors (e.g., IBM Power4 [107], Intel Core [28],

AMD Opteron [24], Sun UltraSPARC III [45]) and have been shown quite e�ective for desktop and

engineering applications. Stride prefetchers [6, 49, 50, 57, 90, 98, 100, 116] detect streams (i.e.,

the sequence of consecutive addresses) that exhibit strided access pa�erns (Section 3.1.1) and

generate prefetch requests by adding the detected stride to the last observed address. While early

stride prefetchers [6, 100] capture only access pa�erns that are separated by a constant stride, la�er

proposals target access pa�erns that exhibit multiple [50] or variable [98] strides.

O�set prefetching [79, 92] is an evolution of stride prefetching, in which, the prefetcher does not
try to detect strided streams. Instead, whenever a core requests for a cache block (e.g., A), the o�set

prefetcher prefetches the cache block that is distanced by k cache lines (e.g., A + k), where k is

the prefetch o�set. In other words, o�set prefetchers do not correlate the accessed address to any

speci�c stream; rather, they treat the addresses individually, and based on the prefetch o�set, they

issue a prefetch request for every accessed address. It is noteworthy that the o�set prefetcher may

adjust the prefetch o�set dynamically based on the application’s behavior.

Stride prefetchers impose minimal area overhead and are highly e�ective when a program

exhibits strided access pa�erns (e.g., programs with dense matrices), but fall short of e�ciency

for pointer-chasing applications, in which strided accesses are scarce [84, 111]. We include two

prefetchers from this class: (1) Instruction-Based Stride Prefetcher [6], and (2) Best-Offset

Prefetcher [79].

4.1.1 Instruction-Based Stride Prefetcher (IBSP). We incorporate IBSP as it is prevalent in

today’s commercial processors. �e prefetcher tracks the strided streams on a per load instruction

basis: the prefetcher observes accesses issued by individual load instructions and sends prefetch

requests if the accesses manifest a strided pa�ern. Figure 1 shows the organization of IBSP’s

metadata table, named Reference Prediction Table (RPT). RPT is a structure tagged and indexed with

the Program Counter (PC) of load instructions. Each entry in the RPT corresponds to a speci�c load

instruction; it keeps the Last Block referenced by the instruction and the Last Stride observed in the

stream (i.e., the distance of two last addresses accessed by the instruction).

Upon each trigger access (i.e., a cache miss or a prefetch hit), the RPT is searched with the PC of

the instruction. If the search results in a miss, it means that no history does exist for the instruction,

and hence, no prefetch request can be issued. Under two circumstances, a search may result in

a miss: (1) whenever a load instruction is a new one in the execution �ow of the program, and

ergo, no history has been recorded for it so far, and (2) whenever a load instruction is re-executed

a�er a long time, and the corresponding recorded metadata information has been evicted from

the RPT due to con�icts. In such cases when no matching entry does exist in the RPT, a new

entry is allocated for the instruction, and possibly a victim entry is evicted. �e new entry is

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

Evaluation of Hardware Data Prefetchers on Server Processors 52:7

Tag Last Block Last Stride
0x1450

0x1900

0x135F410D

0x21EE97F3

5

6

PC

=-Current
Address

+
Is Strided?

Prefetch
Candidate

Reference Prediction Table (RPT)

Current
Address

Current
Stride

Fig. 1. The organization of Instruction-Based Stride Prefetcher (IBSP). The ‘RPT’ keeps track of various
streams.

tagged with the PC, and the Last Block �eld of the entry is �lled with the referenced address. �e

Last Stride is also set to zero (an invalid value) as no stride has yet been observed for this stream.

However, if searching the RPT results in a hit, it means that there is a recorded history for the

instruction. In this case, the recorded history information is checked with the current access to �nd

out whether or not the stream is a strided one. To do so, the di�erence of the current address and

the Last Block is calculated to get the current stride. �en, the current stride is checked against the

recorded Last Stride. If they do not match, it is implied that the stream does not exhibit a strided

access pa�ern. However, if they match, it is construed that the stream is a strided one as three

consecutive accesses have produced two identical strides. In this case, based on the lookahead

of the prefetcher (Section 3.2), several prefetch requests are issued by consecutively adding the

observed stride to the requested address. For example, if the current address and the current stride

are A and k , respectively, and the lookahead of prefetching is three, prefetch candidates will be

{A+ k,A+ k + k,A+ k + k + k}. Finally, regardless of the fact that the stream is strided or not, the

corresponding RPT entry is updated: the Last Block is updated with the current address, and the

Last Stride takes the value of the current stride.

4.1.2 Best-Offset Prefetcher (BOP). BOP is a recent proposal for o�set prefetching, as well as

the winner of the Second Data Prefetching Championship (DPC-2) [91]. BOP extends Sandbox

Prefetcher (SP) [92], which is the primary proposal for o�set prefetching, and enhances its

timeliness. We �rst describe the operations of SP and then elucidate how BOP extends it.

SP is an o�set prefetcher and a�empts to dynamically �nd the o�sets that yield accurate prefetch

requests. To �nd such o�sets, SP de�nes an evaluation period in which it assesses the prefetching

accuracy of multiple prede�ned o�sets, ranging from −n to +n, where n is a constant, say, eight.

For every prefetch o�set, a score value is associated, and when the evaluation period is over, only

o�sets whose score values are beyond a certain threshold are considered accurate o�sets; and actual

prefetch requests are issued using such o�sets.

In the evaluation period, for determining the score values, SP issues virtual prefetch requests using

various o�sets. Virtual prefetching refers to the act of adding the information of candidate prefetch

addresses to speci�c storage rather than actually prefetching them. �at is, in the evaluation

period, instead of issuing numerous costly prefetch requests (Section 3.4) using all o�sets, prefetch

candidates are simply inserted into speci�c storage. Later, when the application generates actual

memory references, the stored prefetch candidates are checked against them: if an actual memory

reference matches with a prefetch candidate in the speci�c storage, it is implied that the candidate

was an accurate prefetch request, and accordingly, the score value of the o�set that has generated

this prefetch candidate is incremented.

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

52:8 M. Bakhshalipour et al.

For the sake of storage e�ciency, SP uses a Bloom Filter [13] as the speci�c storage for keeping

the record of prefetch candidates of each o�set. Generally, Bloom Filter is a probabilistic data

structure that is used for examining whether an element is not a member of a set. �e �lter has

an array of counters and several hash functions, where each hash function maps the input to a

counter in the array. Upon inserting an element into the �lter, all counters identi�ed by all of

the hash functions are incremented, signifying the membership of the element. Upon checking

the membership of an element, all counters identi�ed by all of the hash functions are searched.

If at least one of the counters be zero, it is construed that the element is not a member of the

set as none of the corresponding counters has been incremented. In the context of SP, prefetch

candidates generated by o�sets are added to the Bloom Filter. �en, upon triggering an actual

memory reference, Bloom Filter is checked to �nd out if the current memory reference has been

inserted into the Bloom Filter as a prefetch candidate; and accordingly, the score value of the o�sets

are manipulated.

Figure 2 shows the hardware realization of SP that mainly consists of a Sandbox Prefetch Unit
(SPU) and a Bloom Filter. SPU maintains the status of several speci�c o�sets and evaluates them

in a round-robin fashion. Upon each triggering access (i.e., cache miss or prefetch hit), the cache

line address is checked against the Bloom Filter to determine if the cache line would have been

prefetched by the under-evaluation o�set. If the Bloom Filter contains the address, the score value

of the o�set is incremented; then the procedure repeats for the other o�sets. When the evaluation

period is over, only o�sets whose score values are beyond a certain threshold are allowed to issue

prefetch requests.

Bloom Filter

Referenced Address

Sandbox Prefetching Unit (SPU)

Offset

+8

Score

-3

1

12

H1 H2 H3

 1 0 3 2 0 1Pr
efe

tch
 O

ffs
et

Fig. 2. The organization of Sandbox Prefetcher (SP). The ‘SPU’ keeps the score values of various evaluated
o�sets. The ‘Bloom Filter’ serves as temporary storage for keeping the prefetch candidates during the
evaluation period of each o�set. Each circle in the ‘Bloom Filter’ represents a di�erent hash function. The
‘Prefetch O�set’ in the figure represents the under-evaluation o�set.

SP chooses prefetch o�sets merely based on their accuracy and ignores the timeliness. Nonethe-

less, accurate but late prefetches do not accelerate the execution of applications as much as timely

prefetch requests do. �erefore, BOP tweaks SP and a�empts to select o�sets that result in timely

prefetch requests, having the prefetched blocks ready before the processor actually asks for them.

Figure 3 shows the hardware structure of BOP. Similar to SP, BOP evaluates the e�ciency of

various o�sets and chooses the best o�set for prefetching. However, unlike SP, BOP promotes

o�sets that generate timely prefetch candidates rather than merely accurate ones. �e main idea

behind BOP is: “For k to be a timely prefetch o�set for line A, line A− k should have been accessed

recently.” �at is, o�sets whose prefetch candidates are used by the application not much longer
than they generated are considered as the suitable o�sets, and accordingly, their score values are

incremented. In order to evaluate the timeliness of prefetch requests issued using various o�sets,

BOP replaces SP’s Bloom Filter with a set-associative Recent Requests Table (RRT). �e size of the

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

Evaluation of Hardware Data Prefetchers on Server Processors 52:9

RRT is purposely chosen to be small in order to keep only recent requests. For every triggering

event A, under the evaluation period of o�set k , the score of the o�set is incremented if line A − k
hits in the RRT. In other words, under the evaluation period of o�set k , if line A is requested by the

processor and line A−k hits in the RRT, it is construed that “if o�set k had issued a prefetch request

upon line A − k , its prefetch requests (i.e., A − k + k = A) would have been timely.” �erefore, k is

identi�ed as an o�set whose prefetch requests match with the demand of the processor, and thus,

its score is incremented.

Unlike SP that evaluates o�sets in the range of −n to +n for some constant n, BOP evaluates 46

(almost random) constant o�sets that were picked empirically. �e other components and functions

of BOP are similar to those of SP.

Recent Requests Table (RRT)

0x1450 0x1F10

0xE152 0x10A0

-

Filled

Best-Offset Learning

Offset

256

Score

13

2

10

Prefetch Offset

Address

Fig. 3. The organization of Best-O�set Prefetcher (BOP). The ‘Best-O�set Learning’ keeps track of score
values associated with various o�sets, serving the function of ‘SPU’ in SP. The ‘Recent Requests Table’ holds
the recent prefetch candidates. The ‘Prefetch O�set’ in the figure represents the under-evaluation o�set.

4.2 Temporal Prefetching
Temporal prefetching refers to replaying the sequence of past cache misses in order to avert future

misses. Temporal data prefetchers [9, 10, 21, 51, 56, 88, 103, 110, 111] record the sequence of data

misses in the order they appear and use the recorded history for predicting future data misses.

Upon a new data miss, they search the history and �nd a matching entry and replay the sequence

of data misses a�er the match in an a�empt to eliminate potential future data misses. A tuned

version of temporal prefetching has been implemented in IBM Blue Gene/Q, where it is called List

Prefetching [43].

Temporal prefetching is an ideal choice to eliminate long chains of dependent cache misses, that

are common in pointer-chasing applications (e.g., OLTP and Web) [10]. A dependent cache miss

refers to a memory operation that results in a cache miss and is dependent on data from a prior cache

miss. Such misses have a marked e�ect on the execution performance of applications and impede

the processor from making forward progress since both misses are fetched serially [10, 44]. Because

of the lack of strided/spatial correlation among dependent misses, stride and spatial prefetchers

are usually unable to prefetch such misses [104]; however, temporal prefetchers, by recording

and replaying the sequences of data misses, can prefetch dependent cache misses and result in a

signi�cant performance improvement.

Temporal prefetchers, on the other face of the coin, also have shortcomings. Temporal prefetching

techniques exhibit low accuracy as they do not know where streams end. �at is, in the foundation

of temporal prefetching, there is no wealth of information about when prefetching should be stopped;

hence, temporal prefetchers continue issuing many prefetch requests until another triggering event

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

52:10 M. Bakhshalipour et al.

occurs, resulting in a large overprediction. Moreover, as temporal prefetchers rely on address

repetition, they are unable to prevent compulsory misses (unobserved misses) from happening. In

other words, they can only prefetch cache misses that at least once have been observed in the past;

however, there are many important applications (e.g., DSS) in which the majority of cache misses

occurs only once during the execution of the application [11], for which temporal prefetching can

do nothing. Furthermore, as temporal prefetchers require to store the correlation between addresses,

they usually impose large storage overhead (tens of megabytes) that cannot be accommodated

on-the-chip next to the cores. Consequently, temporal prefetchers usually place their metadata

tables o�-the-chip in the main memory. Unfortunately, placing the history information o�-the-chip

increases the latency of accessing metadata, and more importantly, results in a drastic increase in

the o�-chip bandwidth consumption for fetching and updating the metadata.

We include two state-of-the-art temporal prefetching techniques: (1) Sampled TemporalMemory

Streaming [110], and (2) Irregular Stream Buffer [51].

4.2.1 Sampled Temporal Memory Streaming (STMS). STMS is a state-of-the-art temporal data

prefetcher that was proposed and evaluated in the context of server and scienti�c applications. �e

main observation behind STMS is that the length of temporal streams widely di�ers across programs

and across di�erent streams in a particular program, as well; ranging from a couple to hundreds of

thousands of cache misses. In order to e�ciently store the information of various streams, STMS

uses a circular FIFO bu�er, named History Table, and appends every observed cache miss to its end.

�is way, the prefetcher is not required to �x a speci�c prede�ned length for temporal streams

in the metadata organization, that would be resulted in wasting storage for streams shorten than

the prede�ned length or discarding streams longer than it; instead, all streams are stored next to

each other in a storage-e�cient manner. For locating every address in the History Table, STMS

uses an auxiliary set-associative structure, named Index Table. �e Index Table stores a pointer for

every observed miss address to its last occurrence in the History Table. �erefore, whenever a cache

miss occurs, the prefetcher �rst looks up the Index Table with the missed address and gets the

corresponding pointer. Using the pointer, the prefetcher proceeds to the History Table and issues

prefetch requests for addresses that have followed the missed address in the history.

Figure 4 shows the metadata organization of STMS, which mainly consists of a History Table and

an Index Table. As both tables require multi-megabyte storage for STMS to have reasonable miss

coverage, both tables are placed o�-the-chip in the main memory. Consequently, every access to

these tables (read or update) should be sent to the main memory and brings/updates a cache block

worth of data. �at is, for every stream, STMS needs to wait for two long (serial) memory requests

to be sent (one to read the Index Table and one to read the correct location of the History Table) and

their responses to come back to the prefetcher before issuing prefetch requests for the stream. �e

delay of the two o�-chip memory accesses, however, is compensated over several prefetch requests

of a stream if the stream is long enough.

Index Table
A

History Table
A B C

B
C

Fig. 4. The organization of Sampled Temporal Memory Streaming (STMS).

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

Evaluation of Hardware Data Prefetchers on Server Processors 52:11

4.2.2 Irregular Stream Buffer (ISB). ISB is another state-of-the-art proposal for temporal

data prefetching that targets irregular streams of temporally-correlated memory accesses. Unlike

STMS that operates on the global miss sequences, ISB a�empts to extract temporal correlation

among memory references on a per load instruction basis (Section 4.1.1). �e key innovation of

ISB is the introduction of an extra indirection level for storing metadata information. ISB de�nes a

new conceptual address space, named Structural Address Space (SAS), and maps the temporally-

correlated physical address to this address space in a way that they appear sequentially. �at is,

with this indirection mechanism, physical addresses that are temporally-correlated and used one

a�er another, regardless of their distribution in the Physical Address Space (PAS) of memory, become

spatially-located and appear one a�er another in SAS. Figure 5 shows a high-level example of this

linearization.

Physical Address Space (PAS)

A B C D

Structural Address Space (SAS)

A C B D

Fig. 5. An example of linearizing sca�ered temporally-correlated memory references.

ISB utilizes two tables to record a bidirectional mapping between address in PAS and SAS: one

table, named Physical-to-Structural Address Mapping (PSAM), records temporally-correlated physical

addresses and their mapping information (i.e., to which location in SAS they are mapped); the other

table, named Structural-to-Physical Address Mapping (SPAM), keeps the linearized form of physical

addresses in SAS and the corresponding mapping information (i.e., which physical addresses are

mapped to every structural address). �e main purpose of such a linearization is to represent

the metadata in a spatially-located manner, paving the way to pu�ing the metadata o�-the-chip

and caching its content in on-chip structures [14]. Like STMS, ISB puts its metadata information

o�-the-chip to save the precious SRAM storage; however, unlike STMS, ISB caches the content

of its o�-chip metadata tables in on-chip structures. Caching the metadata works for ISB as a

result of the provided spatial locality, which is not the case for STMS. By caching the metadata

information, ISB (1) provides faster access to metadata since the caches o�er a high hit ratio, and it

is not required to proceed to the o�-chip memory for every metadata access, and (2) reduces the

metadata-induced o�-chip bandwidth overhead as many of the metadata manipulations coalesce in

the on-chip caches. Figure 6 shows an overview of the metadata structures of ISB.

Another important contribution of ISB is the synchronization of o�-chip metadata manipulations

with Translation Lookaside Bu�er (TLB) misses. �at is, whenever a TLB miss occurs, concurrent

with resolving the miss, ISB fetches the corresponding metadata information from the o�-chip

metadata tables; moreover, whenever a TLB entry is evicted, ISB evicts its corresponding entry

from the on-chip metadata structures and updates the o�-chip metadata tables. Doing so, ISB

ensures that the required metadata is always present in the on-chip structures, signi�cantly hiding

the latency of o�-chip memory accesses that would otherwise be exposed.

4.3 Spatial Prefetching
Spatial data prefetchers predict future memory accesses by relying on spatial address correlation, i.e.,

the similarity of access pa�erns among multiple regions of memory. Access pa�erns demonstrate

spatial correlation because applications use data objects with a regular and �xed layout, and accesses

reoccur when data structures are traversed [11]. Spatial data prefetchers [11, 15, 16, 65, 67, 87, 88,

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

52:12 M. Bakhshalipour et al.

Physical-to-Structural Address Mapping
(PSAM)

Structural Address Physical Address
m, m+1,

n, n+1,

A, B,

X, Y,

Structural-to-Physical Address Mapping
(SPAM)

Physical Address Structural Address
A

B

m

m+1

X n

Fig. 6. The organization of Irregular Stream Bu�er (ISB).

101, 105] divide the memory address space into �xed-size sections, named Spatial Regions, and

learn the memory access pa�erns over these sections. �e learned access pa�erns are then used

for prefetching future memory references when the application touches the same or similar Spatial
Regions.

Spatial data prefetchers impose low area overhead because they store o�sets (i.e., the distance

of a block address from the beginning of a Spatial Region) or deltas (i.e., the distance of two

consecutive accesses that fall into a Spatial Region) as their metadata information, and not complete

addresses. Another equally remarkable strength of spatial data prefetchers is their ability to

eliminate compulsory cache misses. Compulsory cache misses are a major source of performance

degradation in important classes of applications, e.g., scan-dominated workloads, where scanning

large volumes of data produces a bulk of unseen memory accesses that cannot be captured by

caches [11]. By utilizing the pa�ern that was observed in a past Spatial Region to a new unobserved

Spatial Region, spatial prefetchers can alleviate the compulsory cache misses, signi�cantly enhancing

system performance.

�e critical limitation of spatial data prefetching is its ineptitude in predicting pointer-chasing–

caused cache misses. As dynamic objects can potentially be allocated everywhere in the memory,

pointer-chasing accesses do not necessarily exhibit spatial correlation, producing bulks of dependent

cache misses for which spatial prefetchers can do very li�le (cf. Section 4.2).

We include two state-of-the-art spatial prefetching techniques: (1) Spatial Memory Stream-

ing [105], and (2) Variable Length Delta Prefetcher [101].

4.3.1 Spatial Memory Streaming (SMS). SMS is a state-of-the-art spatial prefetcher that was

proposed and evaluated in the context of server and scienti�c applications. Whenever a Spatial
Region is requested for the �rst time, SMS starts to observe and record accesses to that Spatial
Region as long as the Spatial Region is actively used by the application. Whenever the Spatial Region
is no longer utilized (i.e., the corresponding blocks of the Spatial Region start to be evicted from the

cache), SMS stores the information of the observed accesses in its metadata table, named Pa�ern
History Table (PHT).

�e information in PHT is stored in the form of 〈event , pattern〉. �e event is a piece of

information to which the observed access pa�ern is correlated. �at is, it is expected for the stored

access pa�ern to be used whenever event reoccurs in the future. SMS empirically chooses PC+O�set
of the trigger access (i.e., the PC of the instruction that �rst accesses the Spatial Region combined

with the distance of the �rst requested cache block from the beginning of the Spatial Region) as the

event to which the access pa�erns are correlated. Doing so, whenever a PC+O�set is reoccurred,

the correlated access pa�ern history is used for issuing prefetch requests. �e pattern is the history

of accesses that happen in every Spatial Region. SMS encodes the pa�erns of the accesses as a

bit vector. In this manner, for every cache block in a Spatial Region, a bit is stored, indicating

whether the block has been used during the latest usage of the Spatial Region (‘1’) or not (‘0’).

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

Evaluation of Hardware Data Prefetchers on Server Processors 52:13

�erefore, whenever a pattern is going to be used, prefetch requests are issued only for blocks

whose corresponding bit in the stored pattern is ‘1.’ Figure 7 shows the hardware realization of

SMS.

Issue Prefetch

Tag

PC1, Offset1

Pattern

Pattern History Table (PHT)

PC1

Instruction Address

Offset1

Trigger Access

PC2, Offset2

0|1|0| |0|1
1|0|0| |1|0

0x24D8
0x24D8

Spatial Region Base Address

Spatial Pattern
0|1|0| |0|1

+
0x24D9

0x24F7

Fig. 7. The organization of Spatial Memory Streaming (SMS).

4.3.2 Variable Length Delta Prefetcher (VLDP). VLDP is a recent state-of-the-art spatial data

prefetcher that relies on the similarity of delta pa�erns among Spatial Regions of memory. VLDP

records the distance between consecutive accesses that fall into Spatial Regions and uses them to

predict future misses. �e key innovation of VLDP is the deployment of multiple prediction tables

for predicting delta pa�erns. VLDP employs several history tables where each table keeps the

metadata based on a speci�c length of the input history.

Figure 8 shows the metadata organization of VLDP. �e three major components are Delta
History Bu�er (DHB), Delta Prediction Table (DPT), and O�set Prediction Table (OPT). DHB is a

small table that records the delta history of currently-active Spatial Regions. Each entry in DHB is

associated with an active Spatial Region and contains details like the Last Referenced Block. �ese

details are used to index OPT and DPTs for issuing prefetch requests.

AddressPage Tag Last Referenced Block Last Observed Deltas

Delta Prediction
DPT-1

1
2

5

2
3

2

Deltas Prediction
DPT-2

1, 2
2, 3

5, 2

3
5

4

Deltas Prediction
DPT-3

1, 2, 3
2, 3, 5

5, 2, 4

5
2

6

Delta Prediction Tables (DPTs)

Offset Prediction
3
7

5

5
3

2

Of
fse

t P
re

di
cti

on
 Ta

bl
e (

OP
T)

Prefetch Candidate

Per-Page Delta History Buffer (DHB)

Fig. 8. The organization of Variable Length Delta Prefetcher (VLDP).

DPT is a set of key-value pairs that correlates a delta sequence to the next expected delta. VLDP

bene�ts from multiple DPTs where each DPT records the history with a di�erent length of the

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

52:14 M. Bakhshalipour et al.

input. DPT−i associates a sequence of i deltas to the next expected delta. For example, if the

last three deltas in a Spatial Region are d3,d2, and d1 (d1 is the most recent delta), DPT -2 stores

[〈d3,d2〉 → d1] , while DPT -1 records [〈d2〉 → d1] . While looking up the DPTs, if several of them

o�er a prediction, the prediction of the table with the longest sequence of deltas is used, because

predictions that are made based on longer inputs are expected to be more accurate [11]. �is way,

VLDP eliminates wrong predictions that are made by short inputs, enhancing both accuracy and

miss coverage of the prefetcher.

OPT is another metadata table of VLDP, that is indexed using the o�set (and not delta) of the

�rst access to a Spatial Region. Merely relying on deltas for prefetching causes the prefetcher to

need to observe at least �rst two accesses to a Spatial Region before issuing prefetch requests;

however, there are many sparse Spatial Regions in which a few, say, two, of the blocks are used

by the application. �erefore, waiting for two accesses before starting the prefetching may divest

the prefetcher of issuing enough prefetch requests when the application operates on a signi�cant

number of sparse Spatial Regions. Employing OPT enables VLDP to start prefetching immediately

a�er the �rst access to Spatial Regions. OPT associates the o�set of the �rst access of a Spatial
Region to the next expected delta. A�er the �rst access to a Spatial Region, OPT is looked up using

the o�set of the access, and the output of the table is used for issuing a prefetch request. For the

rest of the accesses to the Spatial Region (i.e., second access onward), VLDP uses only DPTs.
Even though VLDP relies on prediction tables with a single next expected delta, it is still able

to o�er a prefetching lookahead larger than one (Section 3.2), using the proposed multi-degree
prefetching mechanism. In the multi-degree mode, upon predicting the next delta in a Spatial Region,

VLDP uses the prediction as an input for DPTs to make more predictions.

4.4 Spatio-Temporal Prefetching
Temporal and spatial prefetching techniques capture separate subsets of cache misses, and hence,

each omits a considerable portion of cache misses unpredicted. As a considerable fraction of data

misses is predictable only by one of the two prefetching techniques, spatio-temporal prefetching

tries to combine them in order to reap the bene�ts of both methods. Another motivation for spatio-

temporal prefetching is the fact that the e�ectiveness of temporal and spatial prefetching techniques

varies across applications. As discussed, pointer-chasing application (e.g., OLTP) produce long

chains of dependent cache misses which cannot be e�ectively captured by spatial prefetching but

temporal prefetching. On the contrary, scan-dominated applications (e.g., DSS) produce a large

number of compulsory cache misses that are predictable by spatial prefetchers and not temporal

prefetchers.

We include Spatio-Temporal Memory Streaming (STeMS) [104], as it is the only proposal in

this class of prefetching techniques.

STeMS synergistically integrates spatial and temporal prefetching techniques in a uni�ed

prefetcher; STeMS uses a temporal prefetcher to capture the stream of trigger accesses (i.e., the

�rst access to each spatial region) and a spatial prefetcher to predict the expected misses within
the spatial regions. �e metadata organization of STeMS mainly consists of the metadata tables

of STMS [110] and SMS [105]. STeMS, however, seeks to stream the sequence of cache misses in
the order they have been generated by the processor, regardless of how the corresponding metadata

information has been stored in the history tables of STMS and SMS. To do so, STeMS employs a

Reconstruction Bu�er which is responsible for reordering the prefetch requests generated by the

temporal and the spatial prefetchers of STeMS so as to send prefetch requests (and deliver their

responses) in the order the processor is supposed to consume them.

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

Evaluation of Hardware Data Prefetchers on Server Processors 52:15

Table 1. Evaluation parameters.

Parameter Value
Chip 14 nm, 4 GHz, 4 cores

Core Out-of-order execution, 4-wide dispatch/retirement, 64-entry LSQ, 256-entry ROB

I-Fetch Unit 32 KB, 2-way, 2-cycle load-to-use, 24-entry pre-dispatch queue, Perceptron branch predictor [53]

L1-D Cache 32 KB, 2-way, 2-cycle load-to-use

L2 Cache 1 MB per core, 16-way, 11 cycle lookup delay, 128 MSHRs

Memory 240-cycle delay, 37.5 GB/s peak bandwidth, two memory controllers

For enabling the reconstruction process, the metadata tables of SMS and STMS are slightly

modi�ed. SMS is modi�ed to record the order of the accessed cache blocks within a spatial region

by encoding spatial pa�erns as ordered lists of o�sets, stored in Pa�erns Sequence Table (PST).
Although PST is less compact than PHT (in the original SMS), the o�set lists maintain the order

required for accurately interleaving temporal and spatial streams. STMS is also modi�ed and

records only spatial triggers (and not all events as in STMS) in a Region Miss Order Bu�er (RMOB).
Moreover, entries in both spatial and temporal streams are augmented with a delta �eld. �e delta

�eld in a spatial (temporal) stream represents the number of events from the temporal (spatial)

stream that is interleaved between the current and next events of the same type. Figure 9 gives an

example of how STeMS reconstructs the total miss order.

Region Miss Order Buffer (RMOB)
PC

Delta

Reconstruction Buffer
A A+5 A+8 B C C-1 A+7 B+2 D

Address
PCA

A

5

PCB

B

2

PCC

C

0

PCD

D

2

Index

PCB

PCA

Seq: (Offset, Delta)

(5, 0) (8, 0) (7, 3)
(2,3)

PCC (-1, 0)

Pattern Sequence Table (PST)

Fig. 9. The organization of Spatio-Temporal Memory Streaming (STeMS) and the reconstruction process.

5 METHODOLOGY
Table 1 summarizes the key elements of our methodology, with the following sections detailing the

modeled platform, workloads, simulation infrastructure, and the con�guration of the evaluated

prefetchers.

5.1 CMP Parameters
Our platform, which is modeled a�er Intel Xeon Processor™ [3], is a quad-core processor with 4 MB

of last-level cache and two memory channels. Core microarchitecture includes 32 KB L1-D and L1-I

caches. �e cache block size is 64 bytes in the entire memory hierarchy. Two memory channels

are located at the corner of the chip and provide up to 37.5 GB/s of o�-chip bandwidth. We use

CACTI [83] to estimate the delay of on-chip caches.

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

52:16 M. Bakhshalipour et al.

5.2 Workloads
We simulate systems running Solaris and executing the workloads listed in Table 2. We include

a variety of server workloads from competing vendors, including Online Transaction Processing,

Decision Support System, Web Server, and CloudSuite [1]. Prior work [36] has shown that these

workloads have characteristics that are representative of the broad class of server workloads.

Table 2. Application parameters.

OLTP - Online Transaction Processing (TPC-C)
DB2 IBM DB2 v8 ESE, 100 warehouses (10 GB), 2 GB bu�er pool

DSS - Decision Support Systems (TPC-H)
Qry 2 and 17 IBM DB2 v8 ESE, 480 MB bu�er pool, 1 GB database

Web Server (SPECweb99)
Apache Apache HTTP server v2.0, 16 K connections, fastCGI, worker threading

Zeus Zeus web server v4.3, 16 K connections, fastCGI

CloudSuite
Data Serving Cassandra 0.7.3 Database, 15 GB Yahoo! Cloud Serving Benchmark

MapReduce Hadoop 0.20.2, Bayesian classi�cation algorithm

Media Streaming Darwin Streaming Server 6.0.3, 7500 Clients, 60 GB dataset, high bitrates

Web Search Nutch 1.2/Lucene 3.0.1, 230 Clients, 1.4 GB Index, 15 GB Data Segment

5.3 Simulation Infrastructure
We use trace-driven simulations for evaluating the ability of each prefetcher at predicting future

cache misses and timing simulations for performance studies. �e trace-driven experiments use

traces that are obtained from the in-order execution of applications with a �xed instruction-per-

cycle (IPC) of 1.0. We run trace-driven simulations for 12 billion instructions and use the �rst half as

the warmup and the rest for the actual measurements. We use ChampSim full-system simulator [2]

for timing experiments. For every application, we create �ve checkpoints with warmed architectural

components (e.g., branch predictors, caches, and prediction tables). Each checkpoint is drawn over

an interval of 10 seconds of simulated time as observed by the Operating System (OS). We execute

200 K instructions from each checkpoint and use the �rst 40 K instructions for warm-up and the

rest for measurements.

5.4 Prefetchers’ Configurations
For every prefetcher, we do a sensitivity analysis to �nd the storage requirement for the prefetcher

to have a reasonable miss coverage. For most of the prefetchers, we begin with an in�nite storage

and reduce the area until the miss coverage drops more than 5% as compared to its peak value;

doing so, we ensure that every prefetcher is able to provide its maximum possible performance

improvement, negating the limiting e�ect of dissimilar storage requirements of di�erent prefetchers,

enabling fair comparison among various approaches. �e miss coverage of stride prefetching

techniques (e.g., BOP), nonetheless, is not in its highest value when the prefetcher has in�nite

storage. �e storage overhead of these approaches is directly tied to their other parameters (e.g.,

evaluation period): providing a larger storage budget for them does not necessarily result in a

higher performance improvement. �erefore, for these prefetching techniques, we start with the

con�guration parameters suggested in the original proposal and modify (increase or decrease)

them to get the highest possible miss coverage.

To have a fair comparison, we consider the following items in the implementation of the com-

peting approaches:

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

Evaluation of Hardware Data Prefetchers on Server Processors 52:17

• All prefetchers are trained on L1-D misses (LLC accesses). �is way, each core has its own

prefetcher and issues prefetch requests for itself, independent of others.

• Except for STMS and STeMS, other prefetching techniques directly prefetch into the primary

data cache (L1-D). STMS and STeMS rely on temporal correlation of global misses and

hence, are inaccurate (cf. Section 4.2). Consequently, streaming the prefetched data into the

L1-D would signi�cantly pollute the cache. For STMS and STeMS, we place the prefetched

data in a small bu�er next to L1-D cache. It is worth mentioning that the other prefetching

techniques do not bene�t from such an approach (i.e., prefetching into a small prefetch

bu�er). �is is because of the fact that the other prefetching techniques do not prefetch the

next miss in time and usually prefetch cache blocks that a program may need far from the

current miss. �erefore, prefetching into a small prefetch bu�er would result in the early

eviction of the prefetched blocks, diminishing the performance.

• �e prefetching lookahead of all methods, except SMS, is set to four, providing a sensible

trade-o� between the performance improvement and the o�-chip bandwidth overhead.

�e prefetching lookahead of SMS depends on the recorded pa�erns and varies across

regions. As SMS does not keep the order of prefetch candidates, it is not possible to enforce

a prede�ned prefetching lookahead to it.

We simulate the competing data prefetchers with the following con�gurations. As a point of

reference, we also include the opportunity results for temporal, spatial, and spatio-temporal data

prefetching techniques.

5.4.1 Instruction-Based Stride Prefetcher (IBSP). We simulate IBSP with a 32-entry fully-

associative RPT.

5.4.2 Best-Offset Prefetcher (BOP). A 64-entry fully-associative RR Table is used, and 46

o�sets are evaluated based on the original proposal [79].

5.4.3 Sampled Temporal Memory Streaming (STMS). STMS uses a 6-million-entry Index Table
and a 6-million-entry History Table. �e Index Table is indexed by the lower bits of the trigger

address. At any time, up to four concurrent streams are tracked for issuing prefetch requests. STMS

requires minimal on-chip storage for tracking active streams and stores bulk of metadata in the

main memory o� the chip. History Table entries coalesce into a 64 B bu�er and are �ushed into the

main memory when the bu�er is �lled. Upon reading/updating the Index Table, the corresponding

entry is fetched into a small 64 B bu�er and is wri�en to the memory a�er the modi�cation. STMS

also uses four 64 B bu�ers, each dedicated to an active stream, for keeping the addresses of active

streams for prefetching. Prefetched cache blocks are placed into a 2 KB prefetch bu�er near the

cache.

5.4.4 Irregular Stream Buffer (ISB). Two 4 K-entry on-chip structures are used to cache the

content of two 3 M-entry o�-chip metadata tables. Parts of the metadata that may be used by the

processor are always in the on-chip structures.

5.4.5 Spatial Memory Streaming (SMS). Our sensitivity analysis demonstrates that 16 K-entry

PHT is su�cient for SMS to reach the peak miss coverage. �e memory space is divided into 2 KB

Spatial Regions.

5.4.6 Variable Length Delta Prefetcher (VLDP). VLDP is equipped with a 16-entry DHB,

64-entry OPT, and three 128-entry fully-associative DPTs. �e size of spatial regions is set to 2 KB.

5.4.7 Spatio-Temporal Memory Streaming (STeMS). STeMS uses a 2 M-entry RMOB, a 2 M-

entry Index Table, and a 16 K-entry PST. �e indexing scheme of metadata tables is exactly the same

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

52:18 M. Bakhshalipour et al.

as that of STMS and SMS. STeMS uses the on-chip structure of STMS, with the same con�guration,

for reading and updating the RMOB and the Index Table entries. Additionally, STeMS leverages

the Filter Table and the Accumulation Table of SMS, again with the same con�guration, for dealing

with the o�-chip PST. Up to four streams are tracked concurrently. �e Reconstruction Bu�er of

each active stream has 256 entries. �e size of the prefetch bu�er is set to 2 KB.

5.4.8 Temporal Opportunity (T-Opp). Like prior studies of measuring repetitiveness of access

sequences [10, 20], we adopt the Seqitur hierarchical data compression algorithm [89] to recognize

the opportunity for temporal prefetching using data miss sequences. Seqitur creates a grammar

whose production rules resemble the repetitions in its input. Every production rule associates a tag

to a string of tokens and other rule tags. Seqitur extends the grammar’s root production rule by

one symbol at a time, incrementally; when a symbol is added, the grammar is adjusted to form the

new production rules. �erefore, Seqitur catches new repetitions that the added symbol creates.

We compare temporal prefetchers against Seqitur to see what fraction of the opportunity they

are able to cover.

5.4.9 Spatial Opportunity (S-Opp). Upon each cache miss to a new spatial region, the ideal

spatial prefetcher issues prefetches for all the blocks that will be requested from that spatial region

in the future. Hence, with an ideal spatial prefetcher, the only access that may miss in the cache is

the �rst access to a spatial region. Regarding the data supply, an ideal spatial prefetcher performs

like a cache whose block size is equal to the size of a spatial region (i.e., 2 KB), but the number of

blocks in the cache remains unchanged.

5.4.10 Spatio-Temporal Opportunity (ST-Opp). Ideal spatio-temporal data prefetcher eliminates

all misses that can be captured by either the ideal spatial data prefetcher or the ideal temporal data

prefetcher. To measure the opportunity, we �rst eliminate all misses that can be captured by an

ideal spatial data prefetcher. �en, we run the Seqitur algorithm on the remaining misses to

eliminate those that can be captured by an ideal temporal prefetcher.

6 EVALUATION RESULTS
We run trace-based simulations for pro�ling and miss coverage studies and detailed cycle-accurate

timing simulations for performance experiments.

6.1 Coverage and Accuracy
To compare the e�ectiveness of prefetching techniques, Figure 10 shows the coverage and overpre-

diction of the competing prefetching techniques. Covered misses are the ones that are successfully

eliminated by a prefetcher. Overpredictions are wrongly prefetched cache blocks, which cause

bandwidth overhead and potentially pollute the cache or prefetch bu�er. �e wrong prefetches are

normalized against the number of cache misses in the baseline system with no data prefetcher.

Corroborating prior work [8, 10, 36], stride prefetchers are not e�ective at capturing a signi�cant

fraction of data misses of server workloads. �is is because of the fact that server applications use

complex data structures and pointer-chasing code, and hence, do not exhibit signi�cant strided

access pa�erns. IBSP rarely issues prefetch requests, resulting in low miss coverage and low

overprediction rate. BOP is more aggressive and consequently, covers more misses at the cost of a

higher overprediction rate.

Our results show that STMS outperforms ISB regarding both miss coverage and the overprediction.

We �nd that PC localization is the main source of the ine�ciency of ISB. ISB correlates temporal

streams with load instructions and aggressively issues prefetch requests for the future references

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

Evaluation of Hardware Data Prefetchers on Server Processors 52:19

of the load instructions. We �nd that this mechanism su�ers from two main obstacles: (1) PC-

localization breaks the strong temporal correlation among global addresses that is dominant in

server workloads (see the results of T-Opp), and (2) PC-localization prefetches the next misses of

a load instruction, which may not be the next misses of the program. As server workloads have

large instruction working sets (in the range of few megabytes [36]), the re-execution of a speci�c

load instruction in the execution order may take a long time; hence, the prefetched cache blocks

of a PC-localized temporal prefetcher may be evicted from the cache due to con�icts, prior to the

re-execution of the load instruction. While STMS captures more cache misses than ISB, it falls

short of covering the entire temporal opportunity. �e gap between STMS and T-Opp ranges from

14% in Web Search to 38% in DSS Qry2 with an average of 21%.

SMS covers more cache misses than VLDP with lower overprediction rate. Our investigations

show that the multi-degree prefetching mechanism (i.e., increasing the prefetching lookahead

beyond one) of VLDP is the most contributor to its large overprediction rate. Once VLDP has

predicted the next access of a spatial region, it makes more prefetches using the prediction as an

input to the metadata tables. We �nd that this strategy is inaccurate for server workloads, and

gets worse as VLDP further repeats this process. With all this, both SMS and VLDP are far from

covering the opportunity of spatial prefetching: on average, the best-performing spatial prefetcher

covers less than 43% of the spatial opportunity, leaving a signi�cant fraction of spatially-predictable

misses unpredicted.

Except for MapReduce, which exhibits labyrinthine access pa�erns, an ideal spatio-temporal

prefetcher is able to eliminate more than three-fourths of cache misses. While there is a high spatio-

temporal opportunity, STeMS covers only a small fraction of it, with a considerable overprediction

rate. Despite high overhead (i.e., large tables and bandwidth overhead), STeMS covers only 28% of

the opportunity, making it quite ine�ective.

6.2 Cycle-Accurate Evaluation
Figure 11 shows the performance improvement of the competing prefetchers over a baseline with no

data prefetcher. As a result of the moderate coverage, stride prefetchers are unable to signi�cantly

boost the performance. Among stride prefetchers, BOP o�ers a higher performance improvement,

primarily because of being more aggressive.

STMS outperforms ISB thanks to its higher coverage and accuracy. However, STMS su�ers from

a high start-up cost, as the �rst prefetch request is sent a�er two memory round-trip latency. �is

is why notwithstanding o�ering high miss coverage, STMS is unable to signi�cantly boost the

performance of applications that are dominated with short temporal streams (e.g., Web Search).

SMS outperforms VLDP due to its higher coverage and lower overprediction rate. While SMS

and VLDP are e�ective at boosting the performance in most of the evaluated workloads, they o�er

li�le bene�ts for the MapReduce workload. We �nd that most of the misses that SMS and VLDP

cover in this workload are independent misses, and hence, they are already fetched in parallel with

the out-of-order execution.

�e performance improvement of STeMS ranges from 1% in DSS Qry2 to 18% in Data Serving.

Like STMS, the metadata of STeMS is located o�-the-chip, and hence, STeMS su�ers from a high

start-up latency. STeMS can start issuing prefetch requests only a�er three serial memory round-

trip access latencies. �is makes STeMS ine�ective, especially for applications that are dominated

by sparse spatial regions (i.e., regions that have few predicted blocks). In such regions, the start-up

latency of prefetching is not compensated because only few cache blocks are prefetched a�er

waiting a long time for the metadata to arrive.

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

52:20 M. Bakhshalipour et al.

0
%

5
0

%

1
0

0
%

1
5

0
%

2
0

0
%

2
5

0
%

IBSP
BOP

STMS
ISB

T-Opp
SMS

VLDP
S-Opp

STeMS
ST-Opp

IBSP
BOP

STMS
ISB

T-Opp
SMS

VLDP
S-Opp

STeMS
ST-Opp

IBSP
BOP

STMS
ISB

T-Opp
SMS

VLDP
S-Opp

STeMS
ST-Opp

IBSP
BOP

STMS
ISB

T-Opp
SMS

VLDP
S-Opp

STeMS
ST-Opp

IBSP
BOP

STMS
ISB

T-Opp
SMS

VLDP
S-Opp

STeMS
ST-Opp

IBSP
BOP

STMS
ISB

T-Opp
SMS

VLDP
S-Opp

STeMS
ST-Opp

IBSP
BOP

STMS
ISB

T-Opp
SMS

VLDP
S-Opp

STeMS
ST-Opp

IBSP
BOP

STMS
ISB

T-Opp
SMS

VLDP
S-Opp

STeMS
ST-Opp

IBSP
BOP

STMS
ISB

T-Opp
SMS

VLDP
S-Opp

STeMS
ST-Opp

IBSP
BOP

STMS
ISB

T-Opp
SMS

VLDP
S-Opp

STeMS
ST-Opp

O
L

T
P

 D
B

2
D

SS
 Q

ry
2

D
SS

 Q
ry

1
7

W
eb

 A
p

ac
h

e
W

eb
 Z

eu
s

D
at

a
Se

rv
in

g
M

ap
R

ed
u

ce
M

ed
ia

 S
tr

ea
m

in
g

W
eb

 S
ea

rc
h

A
v

er
ag

e

% Consumptions

C
o

v
er

ag
e

U
n

co
v

er
ed

O
v

er
p

re
d

ic
ti

o
n

s

Fi
g.
10
.
C
ov
er
ag
e
an

d
ov
er
pr
ed
ic
ti
on

of
th
e
ev
al
ua

te
d
pr
ef
et
ch
er
s.

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

Evaluation of Hardware Data Prefetchers on Server Processors 52:21

-1
5

%

-1
0

%

-0
5

%

0
0

%

0
5

%

1
0

%

1
5

%

2
0

%

2
5

%

3
0

%

3
5

%

4
0

%

IBSP
BOP

STMS
ISB

SMS
VLDP

STeMS
IBSP
BOP

STMS
ISB

SMS
VLDP

STeMS
IBSP
BOP

STMS
ISB

SMS
VLDP

STeMS
IBSP
BOP

STMS
ISB

SMS
VLDP

STeMS
IBSP
BOP

STMS
ISB

SMS
VLDP

STeMS
IBSP
BOP

STMS
ISB

SMS
VLDP

STeMS
IBSP
BOP

STMS
ISB

SMS
VLDP

STeMS
IBSP
BOP

STMS
ISB

SMS
VLDP

STeMS
IBSP
BOP

STMS
ISB

SMS
VLDP

STeMS
IBSP
BOP

STMS
ISB

SMS
VLDP

STeMS

O
L

T
P

 D
B

2
D

SS
 Q

ry
2

D
SS

 Q
ry

1
7

W
eb

 A
p

ac
h

e
W

eb
 Z

eu
s

D
at

a
Se

rv
in

g
M

ap
R

ed
u

ce
M

ed
ia

St
re

am
in

g
W

eb
 S

ea
rc

h
G

M
ea

n

Speedup over Baseline

Fi
g.
11
.
Th

e
pe
rf
or
m
an

ce
im

pr
ov
em

en
t
of

va
ri
ou

s
pr
ef
et
ch
in
g
ap

pr
oa
ch
es
.

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

52:22 M. Bakhshalipour et al.

6.3 Storage Requirement
�e e�ectiveness of prefetchers depends on the size of the history on which the predictions are

made. Figure 12 shows the on-chip and o�-chip storage requirements of the evaluated prefetchers.

Obviously, the storage requirement of temporal prefetching techniques is an order of magnitude

higher than the other prefetching techniques. �e high storage requirement necessitates moving the

metadata tables to the o�-chip memory. �e metadata storage of temporal prefetchers is determined

by the application’s active data working set and is pre�y large. Transferring the metadata tables

to the main memory solves the problem of area limitation because the multi-megabyte storage

requirement of the temporal prefetchers accounts for only a small portion of the available capacity

in today’s multi-gigabyte main memories.

0

20

40

60

80

0

10

20

30

40

IBSP BOP STMS ISB SMS VLDP STeMS

O
ff

-C
h

ip
 S

to
ra

ge
 (

M
B

)

O
n

-C
h

ip
 S

to
ra

ge
 (

K
B

)

Prefetching Techniques

On-Chip Storage Off-Chip Storage
96

Fig. 12. Storage overhead of evaluated data prefetchers.

Prefetchers that do not rely on temporal correlations impose less area overhead, as they need

less metadata to achieve high coverage. Stride prefetchers need minimal area for metadata, as they

do not store any long-term history and just track several active streams/o�sets. Spatial prefetchers

need to store the memory access pa�erns of di�erent spatial regions. VLDP stores the required

metadata in a compressed manner by recording the delta of two consecutive accesses to a spatial

region instead of full addresses. SMS, on the other hand, correlates the observed pa�erns to the

program code, which leads to growing the metadata storage requirement with the code size.

6.4 O�-Chip Bandwidth Overhead
�e increase in core count has been driving the designs into memory bandwidth wall mainly

because of poor pin-count scalability [7, 12, 47, 52, 94]. As a result, prefetching techniques, for

being e�ective in the context of multi-core and many-core systems, are required to use minimal

o�-chip bandwidth.

�e bandwidth usage of the baseline system varies from one workload to another, ranging

from 1.6 GB/s in MapReduce to 7.7 GB/s in Apache. �e average bandwidth utilization is 12%

(4.5 GB/s) across all workloads. Corroborating prior work [10, 36], our studies show that due to

low instruction- and memory-level parallelisms, server workloads consume only a small fraction

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

Evaluation of Hardware Data Prefetchers on Server Processors 52:23

of o�-chip bandwidth available in today’s commercial processors; hence, there is an abundant

underutilized o�-chip bandwidth, which can be used by data prefetchers.

Figure 13 shows the bandwidth usage of various prefetching techniques averaged across all

workloads. �e bandwidth requirement of prefetching techniques mainly depends on the accuracy

of the prefetcher and the metadata fetch/update rate if the metadata is located o�-the-chip. Among

the evaluated data prefetchers, STMS and STeMS require an order of magnitude higher o�-chip

bandwidth, making them unscalable for many-core processors. �e majority of the tra�c overhead

of these two techniques comes from their costly metadata fetches and updates. ISB, on the other

hand, linearizes the correlation tables and synchronizes the fetch-and-update requests with TLB

replacements, resulting in a drastic reduction in o�-chip bandwidth usage. For prefetchers with

on-chip metadata, the o�-chip bandwidth overhead is due to (1) wrong prefetch requests that

proceed to the o�-chip memory, and (2) extra cache misses caused by wrong prefetches that are

served from the o�-chip main memory. IBSP is extremely conservative and rarely issues prefetch

requests and only imposes a negligible memory tra�c overhead. SMS and VLDP rely on spatial

correlation, and hence, are expected to be more accurate and foist less tra�c overhead. However,

VLDP produces a higher tra�c overhead (as compared to SMS), mainly because of issuing many

wrong prefetches, which itself comes from ine�ciencies in its multi-degree prefetching mechanism

(cf. Section 6.1).

0.4%
6.8%

22.1%

7.6% 4.7% 7.4%

57.1%

0

5

10

15

20

IBSP BOP STMS ISB SMS VLDP STeMST
ra

ff
ic

 O
ve

rh
ea

d
 (

G
B

/s
)

Prefetching Technique

Incorrect Prefetch Metadata Transfer

Fig. 13. Bandwidth overhead of evaluated data prefetchers.

7 COMPLEMENTARYWORK
�ere has also been a large body of work on increasing the e�ciency of hardware data prefetching.

StreamChaining [27] is a general mechanism to connect the mutually-localized sequences of cache

misses to form a long sequence of successful prefetch requests, thereby increasing the timeliness

and the accuracy of prefetch requests. Predictor Virtualization [14] is a mechanism to store

the metadata of data prefetchers in existing on-chip caches, eliminating the necessity of having

large dedicated storage. Controlling the aggressiveness of prefetchers [32, 48, 54, 106] or disabling

them at run-time [58, 60, 113] as strategies to cope with prefetching hazards have also been widely

studied in the literature. Moreover, many pieces of prior work target reducing the delay of the

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

52:24 M. Bakhshalipour et al.

interconnection network that connects cores to cache banks in server processors [17, 73, 75, 76].

Such techniques signi�cantly improve the timeliness of prefetcher requests.

Many pieces of prior work also proposed adjustments to the other system components in order

to make the prefetching more e�cient. PACMan [112] and ICP [99] manage the last-level cache in

the presence of a hardware data prefetcher, trying to reduce prefetch-induce cache interferences.

Reforming memory scheduling policies so as to provide fairness [30] and/or prevent bandwidth

pollution [69] have also been researched by prior work.

8 CONCLUSION AND FUTURE OUTLOOK
Data prefetching has been an a�ractive area of research in the past four decades; as a result of a

large volume of research emphasizing on its importance, data prefetcher has become an inextricable

component of modern high-performance processors.

In this paper, we presented a survey along with an evaluation of state-of-the-art data prefetching

techniques. Speci�cally, we identi�ed the limitations of the state-of-the-art prefetchers, encouraging

further research in this area. We showed that there is a large gap between what state-of-the-art

prefetchers o�er and the opportunity; one direction for future work is bridging the gap between

the best-performing prefetchers’ performance and the ideal opportunity. Moreover, we showed

that some of the prefetchers impose large area and/or o�-chip bandwidth overheads; future work

may target mitigating these overheads, paving the way for using such prefetchers in area- and/or

bandwidth-constrained systems.

ACKNOWLEDGMENT
We thank Mehran Shakerinava of HPCAN-Sharif for his help in conducting some of the experiments

of this work. We thank ACM CSUR’s reviewers for their valuable comments and suggestions. �is

work is supported in part by a grant from Iran National Science Foundation (INSF).

REFERENCES
[1] CloudSuite. Available at h�p://cloudsuite.ch, 2012.

[2] ChampSim. h�ps://github.com/ChampSim/, 2017.

[3] Intelr Xeonr Processor E3-1245 v6. Available at h�ps://www.intel.com/content/www/us/en/products/processors/

xeon/e3-processors/e3-1245-v6.html, 2017.

[4] A. Ailamaki, D. J. DeWi�, M. D. Hill, and D. A. Wood. DBMSs on a Modern Processor: Where Does Time Go? In

Proceedings of the International Conference on Very Large Data Bases (VLDB), pages 266–277, 1999.

[5] H. Akkary and M. A. Driscoll. A Dynamic Multithreading Processor. In Proceedings of the International Symposium
on Microarchitecture (MICRO), pages 226–236. IEEE, 1998.

[6] J.-L. Baer and T.-F. Chen. An E�ective On-chip Preloading Scheme to Reduce Data Access Penalty. In Proceedings of
the ACM/IEEE Conference on Supercomputing, pages 176–186, 1991.

[7] M. Bakhshalipour, A. Faraji, S. A. V. Ghahani, F. Samandi, P. Lot�-Kamran, and H. Sarbazi-Azad. Reducing Writebacks

�rough In-Cache Displacement. ACM Transactions on Design Automation of Electronic Systems (TODAES), 24(2):16,

2019.

[8] M. Bakhshalipour, P. Lot�-Kamran, A. Mazloumi, F. Samandi, M. Naderan-Tahan, M. Modarressi, and H. Sarbazi-Azad.

Fast Data Delivery for Many-Core Processors. IEEE Transactions on Computers (TC), 67(10):1416–1429, 2018.

[9] M. Bakhshalipour, P. Lot�-Kamran, and H. Sarbazi-Azad. An E�cient Temporal Data Prefetcher for L1 Caches. IEEE
Computer Architecture Le�ers (CAL), 16(2):99–102, 2017.

[10] M. Bakhshalipour, P. Lot�-Kamran, and H. Sarbazi-Azad. Domino Temporal Data Prefetcher. In Proceedings of the
International Symposium on High-Performance Computer Architecture (HPCA), pages 131–142. IEEE, 2018.

[11] M. Bakhshalipour, M. Shakerinava, P. Lot�-Kamran, and H. Sarbazi-Azad. Bingo Spatial Data Prefetcher. In Proceedings
of the International Symposium on High-Performance Computer Architecture (HPCA), 2019.

[12] M. Bakhshalipour, H. Zare, P. Lot�-Kamran, and H. Sarbazi-Azad. Die-Stacked DRAM: Memory, Cache, or MemCache?

arXiv preprint arXiv:1809.08828, 2018.

[13] B. H. Bloom. Space/Time Trade-O�s in Hash Coding with Allowable Errors. Commun. ACM, 13(7):422–426, July 1970.

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

http://cloudsuite.ch
https://github.com/ChampSim/
https://www.intel.com/content/www/us/en/products/processors/xeon/e3-processors/e3-1245-v6.html
https://www.intel.com/content/www/us/en/products/processors/xeon/e3-processors/e3-1245-v6.html

Evaluation of Hardware Data Prefetchers on Server Processors 52:25

[14] I. Burcea, S. Somogyi, A. Moshovos, and B. Falsa�. Predictor Virtualization. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pages 157–167,

2008.

[15] J. F. Cantin, M. H. Lipasti, and J. E. Smith. Stealth Prefetching. In Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS), pages 274–282, 2006.

[16] C. F. Chen, S.-H. Yang, B. Falsa�, and A. Moshovos. Accurate and Complexity-E�ective Spatial Pa�ern Prediction. In

Proceedings of the International Symposium on High Performance Computer Architecture (HPCA), pages 276–287, 2004.

[17] C.-H. O. Chen, S. Park, T. Krishna, S. Subramanian, A. P. Chandrakasan, and L.-S. Peh. SMART: A Single-cycle

Recon�gurable NoC for SoC Applications. In Proceedings of the Conference on Design, Automation and Test in Europe
(DATE), pages 338–343, Mar. 2013.

[18] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry. Improving Hash Join Performance �rough Prefetching. ACM
Transactions on Database Systems (TODS), 32(3), Aug. 2007.

[19] T. M. Chilimbi. On the Stability of Temporal Data Reference Pro�les. In Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques (PACT), pages 151–160, 2001.

[20] T. M. Chilimbi and M. Hirzel. Dynamic Hot Data Stream Prefetching for General-Purpose Programs. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pages 199–209, 2002.

[21] Y. Chou. Low-Cost Epoch-Based Correlation Prefetching for Commercial Applications. In Proceedings of the
International Symposium on Microarchitecture (MICRO), pages 301–313, 2007.

[22] J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen. Dynamic Speculative Precomputation. In Proceedings of the
International Symposium on Microarchitecture (MICRO), pages 306–317, 2001.

[23] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee, D. Lavery, and J. P. Shen. Speculative Precomputation:

Long-Range Prefetching of Delinquent Loads. In Proceedings of the International Symposium on Computer Architecture
(ISCA), pages 14–25, 2001.

[24] P. Conway and B. Hughes. �e AMD Opteron Northbridge Architecture. IEEE Micro, 27(2):10–21, Mar. 2007.

[25] H. Cui, J. Wu, C.-C. Tsai, and J. Yang. Stable Deterministic Multithreading �rough Schedule Memoization. In

Proceedings of the USENIX Conference on Operating Systems Design and Implementation (OSDI), pages 207–221. USENIX

Association, 2010.

[26] F. Dahlgren and P. Stenstrom. E�ectiveness of Hardware-Based Stride and Sequential Prefetching in Shared-memory

Multiprocessors. In Proceedings of the International Symposium on High Performance Computer Architecture (HPCA),
pages 68–, 1995.

[27] P. Diaz and M. Cintra. Stream Chaining: Exploiting Multiple Levels of Correlation in Data Prefetching. In Proceedings
of the International Symposium on Computer Architecture (ISCA), pages 81–92, 2009.

[28] J. Doweck. Inside Intel® Core Microarchitecture. In IEEE Hot Chips Symposium (HCS), pages 1–35, 2006.

[29] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Pa�. Fairness via Source �ro�ling: A Con�gurable and High-Performance

Fairness Substrate for Multi-Core Memory Systems. In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), pages 335–346, 2010.

[30] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Pa�. Prefetch-Aware Shared Resource Management for Multi-Core Systems.

In Proceedings of the International Symposium on Computer Architecture (ISCA), pages 141–152, 2011.

[31] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Pa�. Coordinated Control of Multiple Prefetchers in Multi-Core Systems.

In Proceedings of the International Symposium on Microarchitecture (MICRO), pages 316–326, 2009.

[32] E. Ebrahimi, O. Mutlu, and Y. N. Pa�. Techniques for Bandwidth-E�cient Prefetching of Linked Data Structures in

Hybrid Prefetching Systems. In Proceedings of the International Symposium on High Performance Computer Architecture
(HPCA), pages 7–17, 2009.

[33] H. A. Esfeden, F. Khorasani, H. Jeon, D. Wong, and N. Abu-Ghazaleh. CORF: Coalescing Operand Register File

for GPUs. In Proceedings of the International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM, 2019.

[34] P. Esmaili-Dokht, M. Bakhshalipour, B. Khodabandeloo, P. Lot�-Kamran, and H. Sarbazi-Azad. Scale-Out Processors

& Energy E�ciency. arXiv preprint arXiv:1808.04864, 2018.

[35] B. Falsa� and T. F. Wenisch. A Primer on Hardware Prefetching. Morgan & Claypool Publishers, 2014.

[36] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and

B. Falsa�. Clearing the Clouds: A Study of Emerging Scale-Out Workloads on Modern Hardware. In Proceedings of
the International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS),
pages 37–48, 2012.

[37] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and

B. Falsa�. �antifying the Mismatch Between Emerging Scale-Out Applications and Modern Processors. ACM
Transactions on Computer Systems (TOCS), 30(4):15:1–15:24, Nov. 2012.

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

52:26 M. Bakhshalipour et al.

[38] I. Ganusov and M. Burtscher. Future Execution: A Prefetching Mechanism �at Uses Multiple Cores to Speed Up

Single �reads. ACM Transactions on Architecture and Code Optimization (TACO), 3(4):424–449, Dec. 2006.

[39] B. Grot, D. Hardy, P. Lot�-Kamran, C. Nicopoulos, Y. Sazeides, and B. Falsa�. Optimizing Data-Center TCO with

Scale-Out Processors. IEEE Micro, 32(5):1–63, Sept. 2012.

[40] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee, S. Richardson, C. Kozyrakis, and M. Horowitz.

Understanding Sources of Ine�ciency in General-Purpose Chips. In Proceedings of the International Symposium on
Computer Architecture (ISCA), pages 37–47. ACM, 2010.

[41] R. A. Hankins, T. Diep, M. Annavaram, B. Hirano, H. Eri, H. Nueckel, and J. P. Shen. Scaling and Characterizing

Database Workloads: Bridging the Gap Between Research and Practice. In Proceedings of the International Symposium
on Microarchitecture (MICRO), pages 116–120, 2003.

[42] N. Hardavellas, I. Pandis, R. Johnson, N. G. Mancheril, A. Ailamaki, and B. Falsa�. Database Servers on Chip

Multiprocessors: Limitations and Opportunities. In Proceedings of the Biennial Conference on Innovative Data Systems
Research (CIDR), pages 79–87, 2007.

[43] R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Sa�er�eld, K. Sugavanam, P. Coteus, P. Heidelberger, M. Blumrich,

R. Wisniewski, A. Gara, G. Chiu, P. Boyle, N. Chist, and C. Kim. �e IBM Blue Gene/Q Compute Chip. IEEE Micro,

32(2):48–60, 2012.

[44] M. Hashemi, Khubaib, E. Ebrahimi, O. Mutlu, and Y. N. Pa�. Accelerating Dependent Cache Misses with an Enhanced

Memory Controller. In Proceedings of the International Symposium on Computer Architecture (ISCA), pages 444–455,

2016.

[45] T. Horel and G. Lauterbach. UltraSPARC-III: Designing �ird-Generation 64-bit Performance. IEEE Micro, 19(3):73–85,

1999.

[46] C. J. Hughes and S. V. Adve. Memory-Side Prefetching for Linked Data Structures for Processor-in-Memory Systems.

Journal of Parallel and Distributed Computing, 65(4):448–463, Apr. 2005.

[47] J. Huh, D. Burger, and S. W. Keckler. Exploring the Design Space of Future CMPs. In Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques (PACT), pages 199–210, 2001.

[48] I. Hur and C. Lin. Memory Prefetching Using Adaptive Stream Detection. In Proceedings of the International
Symposium on Microarchitecture (MICRO), pages 397–408, 2006.

[49] S. Iacobovici, L. Spracklen, S. Kadambi, Y. Chou, and S. G. Abraham. E�ective Stream-Based and Execution-Based

Data Prefetching. In Proceedings of the International Conference on Supercomputing (ICS), pages 1–11, 2004.

[50] Y. Ishii, M. Inaba, and K. Hiraki. Access Map Pa�ern Matching for Data Cache Prefetch. In Proceedings of the
International Conference on Supercomputing (ICS), pages 499–500, 2009.

[51] A. Jain and C. Lin. Linearizing Irregular Memory Accesses for Improved Correlated Prefetching. In Proceedings of the
International Symposium on Microarchitecture (MICRO), pages 247–259, 2013.

[52] D. Jevdjic, S. Volos, and B. Falsa�. Die-Stacked DRAM Caches for Servers: Hit Ratio, Latency, or Bandwidth? Have

It All with Footprint Cache. In Proceedings of the International Symposium on Computer Architecture (ISCA), pages

404–415, 2013.

[53] D. A. Jiménez and C. Lin. Dynamic Branch Prediction with Perceptrons. In Proceedings of the International Symposium
on High-Performance Computer Architecture (HPCA), pages 197–206, 2001.

[54] V. Jiménez, R. Gioiosa, F. J. Cazorla, A. Buyuktosunoglu, P. Bose, and F. P. O’Connell. Making Data Prefetch Smarter:

Adaptive Prefetching on POWER7. In Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 137–146, 2012.

[55] R. Johnson, S. Harizopoulos, N. Hardavellas, K. Sabirli, I. Pandis, A. Ailamaki, N. G. Mancheril, and B. Falsa�. To

Share or Not to Share? In Proceedings of the International Conference on Very Large Data Bases (VLDB), pages 351–362,

2007.

[56] D. Joseph and D. Grunwald. Prefetching Using Markov Predictors. In Proceedings of the International Symposium on
Computer Architecture (ISCA), pages 252–263, 1997.

[57] N. P. Jouppi. Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-Associative Cache and

Prefetch Bu�ers. In Proceedings of the International Symposium on Computer Architecture (ISCA), pages 364–373, 1990.

[58] D. Kadjo, J. Kim, P. Sharma, R. Panda, P. Gratz, and D. Jimenez. B-Fetch: Branch Prediction Directed Prefetching for

Chip-Multiprocessors. In Proceedings of the International Symposium on Microarchitecture (MICRO), pages 623–634,

2014.

[59] M. Kamruzzaman, S. Swanson, and D. M. Tullsen. Inter-Core Prefetching for Multicore Processors Using Migrating

Helper �reads. In Proceedings of the International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 393–404, 2011.

[60] M. Kandemir, Y. Zhang, and O. Ozturk. Adaptive Prefetching for Shared Cache Based Chip Multiprocessors. In

Proceedings of the Conference on Design, Automation and Test in Europe (DATE), pages 773–778, 2009.

[61] T. S. Karkhanis and J. E. Smith. A First-Order Superscalar Processor Model. pages 338–349, 2004.

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

Evaluation of Hardware Data Prefetchers on Server Processors 52:27

[62] M. Kayaalp, K. N. Khasawneh, H. A. Esfeden, J. Elwell, N. Abu-Ghazaleh, D. Ponomarev, and A. Jaleel. RIC: Relaxed

Inclusion Caches for Mitigating LLC Side-Channel A�acks. In Proceedings of the Design Automation Conference
(DAC), pages 7:1–7:6. ACM, 2017.

[63] F. Khorasani, H. A. Esfeden, N. Abu-Ghazaleh, and V. Sarkar. In-Register Parameter Caching for Dynamic Neural Nets

with Virtual Persistent Processor Specialization. In Proceedings of the International Symposium on Microarchitecture
(MICRO), pages 377–389. IEEE, 2018.

[64] F. Khorasani, H. A. Esfeden, A. Farmahini-Farahani, N. Jayasena, and V. Sarkar. RegMutex: Inter-Warp GPU Register

Time-Sharing. In Proceedings of the International Symposium on Computer Architecture (ISCA), pages 816–828. IEEE

Press, 2018.

[65] J. Kim, S. H. Pugsley, P. V. Gratz, A. L. N. Reddy, C. Wilkerson, and Z. Chishti. Path Con�dence Based Lookahead

Prefetching. In Proceedings of the International Symposium on Microarchitecture (MICRO), pages 60:1–60:12, 2016.

[66] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS: A Scalable and High-Performance Scheduling Algorithm

for Multiple Memory Controllers. In Proceedings of the International Symposium on High Performance Computer
Architecture (HPCA), pages 1–12, 2010.

[67] S. Kumar and C. Wilkerson. Exploiting Spatial Locality in Data Caches Using Spatial Footprints. In Proceedings of the
International Symposium on Computer Architecture (ISCA), pages 357–368, 1998.

[68] J. R. Larus and M. Parkes. Using Cohort-Scheduling to Enhance Server Performance. In Proceedings of the General
Track of the Annual Conference on USENIX Annual Technical Conference (ATEC), pages 103–114, 2002.

[69] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Pa�. Prefetch-Aware DRAM Controllers. In Proceedings of the International
Symposium on Microarchitecture (MICRO), pages 200–209, 2008.

[70] J. Lee, C. Jung, D. Lim, and Y. Solihin. Prefetching with Helper �reads for Loosely Coupled Multiprocessor Systems.

IEEE Transactions on Parallel and Distributed Systems (TPDS), 20(9):1309–1324, Sept. 2009.

[71] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and S. Reinhardt. Understanding and Designing New Server

Architectures for Emerging Warehouse-Computing Environments. In Proceedings of the International Symposium on
Computer Architecture (ISCA), pages 315–326, 2008.

[72] J. L. Lo, L. A. Barroso, S. J. Eggers, K. Gharachorloo, H. M. Levy, and S. S. Parekh. An Analysis of Database Workload

Performance on Simultaneous Multithreaded Processors. In Proceedings of the International Symposium on Computer
Architecture (ISCA), pages 39–50, 1998.

[73] P. Lot�-Kamran, B. Grot, and B. Falsa�. NOC-Out: Microarchitecting a Scale-Out Processor. In Proceedings of the
45th Annual ACM/IEEE International Symposium on Microarchitecture (MICRO), pages 177–187, Dec. 2012.

[74] P. Lot�-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J. Picorel, A. Adileh, D. Jevdjic, S. Idgunji, E. Ozer, and

B. Falsa�. Scale-Out Processors. In Proceedings of the International Symposium on Computer Architecture (ISCA), pages

500–511, 2012.

[75] P. Lot�-Kamran, M. Modarressi, and H. Sarbazi-Azad. An E�cient Hybrid-Switched Network-on-Chip for Chip

Multiprocessors. IEEE Transactions on Computers, 65(5):1656–1662, May 2016.

[76] P. Lot�-Kamran, M. Modarressi, and H. Sarbazi-Azad. Near-Ideal Networks-on-Chip for Servers. In Proceedings of the
International Symposium on High-Performance Computer Architecture (HPCA), pages 277–288, 2017.

[77] C.-K. Luk and T. C. Mowry. Compiler-Based Prefetching for Recursive Data Structures. In Proceedings of the
International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pages

222–233, 1996.

[78] S. Mehta, Z. Fang, A. Zhai, and P.-C. Yew. Multi-Stage Coordinated Prefetching for Present-Day Processors. In

Proceedings of the International Conference on Supercomputing (ICS), pages 73–82, 2014.

[79] P. Michaud. Best-O�set Hardware Prefetching. In Proceedings of the International Symposium on High Performance
Computer Architecture (HPCA), pages 469–480, 2016.

[80] A. Mirhosseini and T. F. Wenisch. �e �euing-First Approach for Tail Management of Interactive Services. IEEE
Micro, 2019.

[81] A. Mirhosseini, A. Sriraman, and T. F. Wenisch. Enhancing Server E�ciency in the Face of Killer Microseconds.

Proceedings of the International Symposium on High-Performance Computer Architecture (HPCA), 2019.

[82] S. Mi�al. A Survey of Recent Prefetching Techniques for Processor Caches. ACM Computing Surveys (CSUR),
49(2):35:1–35:35, Aug. 2016.

[83] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Optimizing NUCA Organizations and Wiring Alternatives

for Large Caches with CACTI 6.0. In Proceedings of the International Symposium on Microarchitecture (MICRO), pages

3–14, 2007.

[84] O. Mutlu, H. Kim, and Y. N. Pa�. Techniques for E�cient Processing in Runahead Execution Engines. In Proceedings
of the International Symposium on Computer Architecture (ISCA), pages 370–381, 2005.

[85] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Pa�. Runahead Execution: An Alternative to Very Large Instruction

Windows for Out-of-Order Processors. In Proceedings of the International Symposium on High Performance Computer

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

52:28 M. Bakhshalipour et al.

Architecture (HPCA), pages 129–, 2003.

[86] M. Nemirovsky and D. M. Tullsen. Multithreading Architecture. Morgan & Claypool Publishers, 1st edition, 2013.

[87] K. J. Nesbit, A. S. Dhodapkar, and J. E. Smith. AC/DC: An Adaptive Data Cache Prefetcher. In Proceedings of the
International Conference on Parallel Architectures and Compilation Techniques (PACT), pages 135–145, 2004.

[88] K. J. Nesbit and J. E. Smith. Data Cache Prefetching Using a Global History Bu�er. In Proceedings of the International
Symposium on High Performance Computer Architecture (HPCA), pages 96–, 2004.

[89] C. G. Nevill-Manning and I. H. Wi�en. Identifying Hierarchical Structure in Sequences: A Linear-time Algorithm.

Journal of Arti�cial Intelligence Research, 7(1):67–82, Sept. 1997.

[90] S. Palacharla and R. E. Kessler. Evaluating Stream Bu�ers As a Secondary Cache Replacement. In Proceedings of the
International Symposium on Computer Architecture (ISCA), pages 24–33, 1994.

[91] S. Pugsley, A. Alameldeen, C. Wilkerson, and H. Kim. �e 2nd Data Prefetching Championship (DPC-2), 2015.

[92] S. H. Pugsley, Z. Chishti, C. Wilkerson, P.-f. Chuang, R. L. Sco�, A. Jaleel, S.-L. Lu, K. Chow, and R. Balasubramonian.

Sandbox Prefetching: Safe Run-Time Evaluation of Aggressive Prefetchers. In Proceedings of the International
Symposium on High Performance Computer Architecture (HPCA), pages 626–637, 2014.

[93] P. Ranganathan, K. Gharachorloo, S. V. Adve, and L. A. Barroso. Performance of Database Workloads on Shared-

Memory Systems with Out-of-Order Processors. In Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages 307–318, 1998.

[94] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin. Scaling the Bandwidth Wall: Challenges in and

Avenues for CMP Scaling. In Proceedings of the International Symposium on Computer Architecture (ISCA), pages

371–382, 2009.

[95] A. Roth and G. S. Sohi. E�ective Jump-Pointer Prefetching for Linked Data Structures. In Proceedings of the
International Symposium on Computer Architecture (ISCA), pages 111–121, 1999.

[96] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W.-m. W. Hwu. Optimization Principles and

Application Performance Evaluation of a Multithreaded GPU Using CUDA. In Proceedings of the Symposium on
Principles and Practice of Parallel Programming (PPoPP), pages 73–82. ACM, 2008.

[97] M. Sadrosadati, A. Mirhosseini, S. B. Ehsani, H. Sarbazi-Azad, M. Drumond, B. Falsa�, R. Ausavarungnirun, and

O. Mutlu. LTRF: Enabling High-Capacity Register Files for GPUs via Hardware/So�ware Cooperative Register

Prefetching. In Proceedings of the International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 489–502. ACM, 2018.

[98] S. Sair, T. Sherwood, and B. Calder. A Decoupled Predictor-Directed Stream Prefetching Architecture. IEEE Transactions
on Computers (TC), 52(3):260–276, Mar. 2003.

[99] V. Seshadri, S. Yedkar, H. Xin, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry. Mitigating Prefetcher-Caused

Pollution Using Informed Caching Policies for Prefetched Blocks. ACM Transactions on Architecture and Code
Optimization (TACO), 11(4):51:1–51:22, Jan. 2015.

[100] T. Sherwood, S. Sair, and B. Calder. Predictor-Directed Stream Bu�ers. In Proceedings of the International Symposium
on Microarchitecture (MICRO), pages 42–53, 2000.

[101] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H. Pugsley, and Z. Chishti. E�ciently Prefetching

Complex Address Pa�erns. In Proceedings of the International Symposium on Microarchitecture (MICRO), pages

141–152, 2015.

[102] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod, S. Chinthamani, S. Hutsell, R. Agarwal, and Y.-C. Liu. Knights

Landing: Second-Generation Intel Xeon Phi Product. IEEE Micro, 36(2):34–46, Mar. 2016.

[103] Y. Solihin, J. Lee, and J. Torrellas. Using a User-Level Memory �read for Correlation Prefetching. In Proceedings of
the International Symposium on Computer Architecture (ISCA), pages 171–182, 2002.

[104] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsa�. Spatio-Temporal Memory Streaming. In Proceedings of the
International Symposium on Computer Architecture (ISCA), pages 69–80, 2009.

[105] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsa�, and A. Moshovos. Spatial Memory Streaming. In Proceedings of the
International Symposium on Computer Architecture (ISCA), pages 252–263, 2006.

[106] S. Srinath, O. Mutlu, H. Kim, and Y. N. Pa�. Feedback Directed Prefetching: Improving the Performance and

Bandwidth-E�ciency of Hardware Prefetchers. In Proceedings of the International Symposium on High Performance
Computer Architecture (HPCA), pages 63–74, 2007.

[107] J. M. Tendler, J. S. Dodson, J. Fields, H. Le, and B. Sinharoy. POWER4 System Microarchitecture. IBM Journal of
Research and Development, 46(1):5–25, 2002.

[108] P. Trancoso, J.-L. Larriba-Pey, Z. Zhang, and J. Torrellas. �e Memory Performance of DSS Commercial Workloads

in Shared-Memory Multiprocessors. In Proceedings of the International Symposium on High Performance Computer
Architecture (HPCA), pages 250–260, 1997.

[109] A. Vakil-Ghahani, S. Mahdizadeh-Shahri, M.-R. Lot�-Namin, M. Bakhshalipour, P. Lot�-Kamran, and H. Sarbazi-Azad.

Cache Replacement Policy Based on Expected Hit Count. IEEE Computer Architecture Le�ers (CAL), 17(1):64–67, 2018.

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

Evaluation of Hardware Data Prefetchers on Server Processors 52:29

[110] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsa�, and A. Moshovos. Practical O�-Chip Meta-Data for Temporal

Memory Streaming. In Proceedings of the International Symposium on High Performance Computer Architecture (HPCA),
pages 79–90, 2009.

[111] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Ailamaki, and B. Falsa�. Temporal Streaming of Shared Memory.

In Proceedings of the International Symposium on Computer Architecture (ISCA), pages 222–233, 2005.

[112] C.-J. Wu, A. Jaleel, M. Martonosi, S. C. Steely, Jr., and J. Emer. PACMan: Prefetch-Aware Cache Management for High

Performance Caching. In Proceedings of the International Symposium on Microarchitecture (MICRO), pages 442–453,

2011.

[113] C.-J. Wu and M. Martonosi. Characterization and Dynamic Mitigation of Intra-Application Cache Interference. In

Proceedings of the International Symposium on Performance Analysis of Systems and So�ware (ISPASS), pages 2–11,

2011.

[114] W. A. Wulf and S. A. McKee. Hi�ing the Memory Wall: Implications of the Obvious. SIGARCH Comput. Archit. News,
23(1):20–24, Mar. 1995.

[115] P. Yedlapalli, J. Kotra, E. Kultursay, M. Kandemir, C. R. Das, and A. Sivasubramaniam. Meeting Midway: Improv-

ing CMP Performance with Memory-Side Prefetching. In Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques (PACT), pages 289–298, 2013.

[116] C. Zhang and S. A. McKee. Hardware-Only Stream Prefetching and Dynamic Access Ordering. In Proceedings of the
International Conference on Supercomputing (ICS), pages 167–175, 2000.

[117] W. Zhang, B. Calder, and D. M. Tullsen. A Self-Repairing Prefetcher in an Event-Driven Dynamic Optimization

Framework. In Proceedings of the International Symposium on Code Generation and Optimization (CGO), pages 50–64,

2006.

Received August 2017; revised December 2018; accepted February 2019

ACM Computing Surveys, Vol. 52, No. 3, Article 52. Publication date: June 2019.

	Abstract
	1 Introduction
	2 Non-Hardware Data Prefetching
	3 Background
	3.1 Predicting Memory References
	3.2 Prefetching Lookahead
	3.3 Location of Data Prefetcher
	3.4 Prefetching Hazards
	3.5 Placing Prefetched Data

	4 State-of-the-art Data Prefetchers
	4.1 Stride Prefetching
	4.2 Temporal Prefetching
	4.3 Spatial Prefetching
	4.4 Spatio-Temporal Prefetching

	5 Methodology
	5.1 CMP Parameters
	5.2 Workloads
	5.3 Simulation Infrastructure
	5.4 Prefetchers' Configurations

	6 Evaluation Results
	6.1 Coverage and Accuracy
	6.2 Cycle-Accurate Evaluation
	6.3 Storage Requirement
	6.4 Off-Chip Bandwidth Overhead

	7 Complementary Work
	8 Conclusion and Future Outlook
	References

