
Appears in Proceedings of the 24th International Symposium on High-Performance Computer Architecture (HPCA)?

Domino Temporal Data Prefetcher

Mohammad Bakhshalipour†1, Pejman Lotfi-Kamran‡, and Hamid Sarbazi-Azad†‡

†Department of Computer Engineering, Sharif University of Technology
‡School of Computer Science, Institute for Research in Fundamental Sciences (IPM)

Abstract—Big-data server applications frequently encounter
data misses, and hence, lose significant performance potential.
One way to reduce the number of data misses or their effect
is data prefetching. As data accesses have high temporal
correlations, temporal prefetching techniques are promising for
them. While state-of-the-art temporal prefetching techniques
are effective at reducing the number of data misses, we observe
that there is a significant gap between what they offer and the
opportunity.

This work aims to improve the effectiveness of temporal
prefetching techniques. We identify the lookup mechanism
of existing temporal prefetchers responsible for the large
gap between what they offer and the opportunity. Existing
lookup mechanisms either not choose the right stream in the
history, or unnecessarily delay the stream selection, and hence,
miss the opportunity at the beginning of every stream. In
this work, we introduce Domino prefetching to address the
limitations of existing temporal prefetchers. Domino prefetcher
is a temporal data prefetching technique that logically looks
up the history with both one and two last miss addresses to
find a match for prefetching. We propose a practical design
for Domino prefetcher that employs an Enhanced Index Table
that is indexed by just a single miss address. We show that
Domino prefetcher captures more than 90% of the temporal
opportunity. Through a detailed evaluation targeting a quad-
core processor and a set of server workloads, we show that
Domino prefetcher improves system performance by 16% over
the baseline with no data prefetcher and 6% over the state-of-
the-art temporal data prefetcher.

I. INTRODUCTION

Server workloads have vast datasets beyond what can be
captured by on-chip caches of modern processors [1], [2].
Consequently, server workloads encounter frequent cache
misses during their execution. The cache misses prevent
server processors from reaching their peak performance
because cores are idle waiting for the data to arrive.

Data prefetching is a widely-used approach to eliminate
cache misses or reduce their effect. While it has been shown
that simple prefetching techniques, such as stride prefetch-
ing [3], [4], [5], are ineffective for server workloads [1], [6],
more advanced data prefetchers may eliminate or reduce
the negative effect of data misses. One of the promising
prefetching techniques is temporal prefetching [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17].

1This work was done while the author was at Sharif University of
Technology. He is currently affiliated with the Institute for Research in
Fundamental Sciences (IPM).

0%

20%

40%

60%

80%

100%

Data
Serving

Map
Reduce-C

Map
Reduce-W

Media
Streaming

OLTP SAT Solver Web
Apache

Web
Search

Web Zeus

Re
ad

 M
iss

 C
ov

er
ag

e

ISB STMS Opportunity

Figure 1. Read miss coverage of two state-of-the-art temporal data
prefetchers with unlimited storage versus the opportunity.

Temporal data prefetchers record the sequence of past
cache misses and use them to predict future cache misses.
Temporal prefetching works because programs consist of
loops, and hence, the sequence of addresses, and conse-
quently, miss addresses repeat [18], [19]. Upon a miss,
temporal prefetchers look up the history to find a match
(usually the most recent match) and replay the sequence of
misses after the match for eliminating future misses. Many
pieces of prior work [20], [21], [22], [23] demonstrated the
effectiveness of temporal prefetching in reducing data misses
and boosting the performance of processors. A variant of
temporal prefetching has been implemented in IBM Blue
Gene/Q, where it is named List Prefetching [24].

Temporal prefetching is suitable for accelerating chains
of dependent data misses, which are common in pointer-
chasing applications [25], [26] (e.g., OLTP [27]). A de-
pendent data miss refers to a data access that results in
a cache miss while the access is dependent on a piece
of data from a prior cache miss. These misses have a
negative effect on the performance of processors, as they
usually stall the core because both misses are fetched
serially [28], [29]. The length of the chain of dependent
misses varies across applications and across different chains
in a particular application, ranging from a couple to hundreds
of thousands of misses [18]. While stride [3], [4], [5] or
spatial [30], [31], [32], [33], [34] prefetchers are usually
incapable of prefetching dependent misses [22] due to
the lack of stride/spatial access patterns among dependent
misses, temporal prefetchers can capture such misses, and
hence, boost performance through substantially increasing

? Copyright c© 2018 IEEE. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version
of Record was published in the proceedings of the 24th International Symposium on High-Performance Computer Architecture (HPCA), pp. 131–142
(DOI: 10.1109/HPCA.2018.00021).

https://doi.org/10.1109/HPCA.2018.00021

0

3

6

9

12

15

Data
Serving

Map
Reduce-C

Map
Reduce-W

Media
Streaming

OLTP SAT Solver Web
Apache

Web
Search

Web Zeus

Av
er

ag
e S

tre
am

 Le
ng

th

STMS Digram Sequitur

Figure 2. Average stream length with STMS, Digram, and Sequitur.

the memory-level parallelism (MLP).
While existing temporal data prefetchers are useful at

eliminating cache misses, we observe that there is a sig-
nificant gap between what they offer and what opportunity
analysis shows for temporal prefetching. Figure 1 shows the
opportunity of temporal prefetching and what STMS [10]
and ISB [13], two state-of-the-art temporal data prefetchers,
offer for several big-data server applications. Like prior
studies of measuring repetitiveness in data misses [7], [18],
[22], we use the Sequitur hierarchical data compression
algorithm [35] to identify the opportunity of temporal
prefetching. While STMS looks for temporal correlation in
the global miss sequence, ISB applies temporal correlation
to the PC-localized miss sequences. As shown, there is a
significant gap between the opportunity and what existing
state-of-the-art temporal prefetchers offer across all work-
loads. On average, the best-performing temporal prefetcher,
i.e., STMS, captures less than 47% of data misses.

This work aims to bridge the gap between what temporal
prefetching techniques offer and the opportunity. Corrobo-
rating prior work [21], our studies show that PC localization
is not useful for temporal correlation in server workloads.
This fact is evident in Figure 1: ISB, a PC-localized temporal
prefetcher, offers lower coverage than STMS that benefits
from the sequence of global misses for prefetching1.

We observe that the lookup mechanism is responsible
for the gap between what the state-of-the-art global-miss-
sequence-based prefetcher (i.e., STMS) offers and the op-
portunity. STMS relies on a single miss address to identify
a stream in the history. Unfortunately, a single miss address
cannot distinguish two streams that begin with the same
miss address. Consequently, STMS frequently picks a wrong
stream for prefetching, as is evident from Figure 1. We
observe that if instead of a single miss address, two con-
secutive miss addresses are used in the lookup mechanism,
the chosen streams will be longer, and hence, more useful
for prefetching. Figure 2 shows the average stream length

1Later in Section V, we discuss why PC localization is ineffective for
server workloads in the context of temporal prefetching.

for Sequitur, which picks the longest stream, STMS that
selects a stream based on the last occurrence of the miss
address, and Digram [21] that chooses a stream based on
the last appearance of two previous misses for several server
workloads. In this experiment, we refer to a stream as the
sequence of consecutive correct prefetches. The figure shows
that using two miss addresses in the lookup mechanism
(i.e., Digram) instead of one (i.e., STMS) results in longer
streams. While average stream length with Sequitur is 7.6,
the stream length reduces to 1.4 for STMS. As a result of
shorter stream length, STMS looks up 2.7× more streams
than Sequitur and at the end of each stream inevitably
encounters a cache miss.

The idea of using last two consecutive misses in the
lookup mechanism is evaluated in Wenisch’s Ph.D. the-
sis [21] and is discarded due to not being effective, and
has never been pursued for publication. Prior work [21]
evaluated the effect of lookups with the last two consecutive
misses on temporal prefetching with a prefetcher named
Digram [21] and concluded that using a single miss address
is more reasonable. Lookups with the last two consecu-
tive misses ensure that a temporal prefetcher cannot issue
prefetch requests for the first two addresses of a stream.
As the length of streams in server workloads is short
(7.6 on average), the benefit of having longer streams is
compensated with the fact that we issue one fewer prefetch
request for every stream. As single-address lookup is simple,
prior work discarded the idea of using two consecutive miss
addresses in the lookup mechanism of temporal prefetchers.

To address the problem, we use a combination of one and
two last misses in the lookup mechanism of the proposed
temporal prefetcher, named Domino. When a new stream
begins, we use a single miss address to prefetch the next
miss, and when the next miss or prefetch hit occurs, we
use the last two cache accesses to identify a stream. We
propose a practical design for Domino that benefits from
an Enhanced Index Table (EIT) that is indexed by a single
miss address. Unlike a conventional Index Table [11] that
solely stores a pointer for each address in the history, EIT, in
addition, keeps the subsequent miss of each address. Having
the next miss of every address in the EIT enables Domino to
(1) find the correct stream in the history using the last two
misses, and (2) issue the first prefetch request of a stream
in one round-trip memory access latency. Therefore, unlike
STMS that requires two accesses to the off-chip memory
to issue the first prefetch request of a stream, Domino
prefetcher issues the first prefetch of a stream after one
access to the memory, as it stores the next miss in its EIT.
This improves the timeliness of the proposed prefetcher.

In this paper, we make the following contributions:
• We observe that the lookup mechanism of the state-of-

the-art temporal prefetcher is responsible for the large
gap between its coverage and the opportunity.

• We corroborate prior work that a lookup mechanism

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

%
of

 C
or

re
ct

Pr
ed

ict
io

ns

Number of Recent Misses Used for Predicting Next Miss

 Data Serving

 MapReduce-C

 MapReduce-W

 Media Streaming

 OLTP

 SAT Solver

 Web Apache

 Web Search

 Web Zeus

Figure 3. The fraction of lookups that result in a correct prediction over
all lookups that find a match in the history, as a function of the number of
addresses that they attempt to match.

based on the last two miss addresses results in larger
streams but at the cost of one fewer prefetch per stream,
as compared to a single-address lookup. The net results
show no significant difference between the two lookup
mechanisms for server workloads.

• We propose a lookup mechanism that benefits from
both one and two previous miss addresses to find larger
streams without imposing fewer prefetch requests per
stream.

• We incorporate the proposed lookup mechanism in
a practical temporal prefetcher named Domino. The
practical design has just one Index Table that is indexed
by a single miss address (instead of two). Moreover,
Domino prefetcher issues the first prefetch for a stream
after one round-trip off-chip memory access latency
(instead of two).

• We use a full-system simulation infrastructure to eval-
uate our proposal in the context of a four-core server
processor on a set of server workloads. Our results show
that our proposal offers, on average, 16% speedup over
the baseline with no prefetcher, and 6% over the state-
of-the-art temporal data prefetcher (i.e., STMS).

II. MOTIVATION

Prefetching is a technique that aims to eliminate cache
misses by bringing a piece of data to the cache before a
processor’s request for the piece of data. Temporal prefetch-
ing techniques rely on the repetitiveness of cache miss
sequences. In the rest of this paper, we use the term
temporal prefetching to refer to a technique that relies on
the repetitiveness of the global cache misses for prefetching.

Upon a cache miss, a temporal prefetcher should look up
the history to find a stream, i.e., a sequence of cache misses
that tend to occur together, for the purpose of predicting
future cache misses. Temporal prefetchers commonly locate
the last occurrence of the missed address in the history and
prefetch the addresses that follow the missed address in the

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

%
of

 T
im

es
 a

M
atc

hi
ng

 En
try

 Is
 Fo

un
d

Number of Recent Misses Used for Predicting Next Miss

 Data Serving

 MapReduce-C

 MapReduce-W

 Media Streaming

 OLTP

 SAT Solver

 Web Apache

 Web Search

 Web Zeus

Figure 4. The fraction of lookups that find a match in the history over
all lookups, as a function of the number of addresses that they attempt to
match.

history [6], [10]. As it is evident from Figure 1, the coverage
of such a prefetcher is considerably less than that of an
oracle that upon a miss, always picks the longest stream in
the history.

In this section, we reduce the problem of temporal
prefetching to identifying the next miss based on the
previously-observed miss sequence. We offer justification
for looking up the history with both last one and two miss
addresses.

As the number of addresses that the lookup mechanism
of a temporal prefetcher attempts to match increases, the
prefetcher becomes more accurate. Figure 3 shows the
fraction of lookups that lead to a correct prediction over
all lookups that find a match in the history, as a function
of the number of addresses that lookups attempt to match.
As shown, the fraction of lookups that lead to a correct
prediction is low if they match only a single address.
Moreover, as the number of addresses that lookups match
increases, the fraction of useful lookups also increases.
However, increasing the number of addresses that a lookup
matches beyond three yields only little improvements in the
fraction of useful lookups. These results clearly show that
temporal prefetchers that rely on just one miss address to
look up the history (e.g., STMS [10]), frequently prefetch
incorrectly.

Another interesting data point, as we increase the number
of addresses that lookups match, is the fraction of lookups
that find a match in the history. Only for lookups that find
a match in the history, the temporal prefetcher issues a
prefetch request. Figure 4 shows the fraction of lookups
that find a match in the history as a function of the number
of addresses that they match. As expected, the number of
lookups that find a match reduces when the number of
matched addresses increases. So temporal prefetchers that
rely on a couple of misses to lookup the history (e.g.,
Digram [21]) miss a significant opportunity due to lack of
finding a match in the previously-observed misses.

0%

25%

50%

75%

100%

125%

150%

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Data Serving MapReduce-C MapReduce-W Media Streaming OLTP SAT Solver Web Apache Web Search Web Zeus

%
Co

ns
um

pt
ion

s

Coverage Uncovered Overpredictions

Figure 5. Coverage and overpredictions of a temporal prefetcher with unlimited storage for lookups with varying number of addresses.

This observation motivates using more than one miss
address for lookup. A prefetcher can look up the history
with the last N misses; if a match is found, the prefetcher
issues a prefetch based on the match; otherwise, it looks up
the history with one fewer miss in a recursive manner. This
way, the prefetcher benefits from both high accuracy and
high opportunity, overcoming the limitations of previously-
proposed temporal prefetchers.

To show the importance of using more than one address
for lookup, Figure 5 shows the coverage and overpredictions
of a temporal prefetcher with lookups of varying number
of addresses. In all cases, if a prefetcher uses N addresses
for lookup, it attempts to find a match with 1,2,3, ...,N
addresses and picks the match with the largest number of
addresses. As shown, the coverage with a single-address
lookup is low across all workloads while the overpredictions
are high. As the number of looked up addresses increases,
both coverage and overpredictions improve. However, only
few workloads benefit from a temporal prefetcher that has
a lookup mechanism that matches more than two addresses.
Even on these workloads, the benefit of matching more than
two addresses is insignificant.

We conclude that using two previous miss addresses is
sufficient to correctly identify the right group of addresses
in the history. As such, a temporal prefetcher should use
both one and two last misses to have high coverage and
accuracy.

III. THE PROPOSAL

Domino prefetcher is a temporal prefetching technique,
and consequently, relies on past misses to predict and
prefetch future memory references. Domino prefetcher per-
forms its actions on cache misses and prefetch hits, which
we refer to as triggering events.

Logically, every time a miss occurs, Domino prefetcher
looks up the history with both the last two triggering events
and the current triggering event to find a match. If the lookup
using the last two triggering events finds a match, Domino
uses the stream of misses that follows the match in the

history for prefetching. Otherwise, if the lookup using the
current triggering event finds a match, it just prefetches the
first address after the match. Then, Domino waits for the
next triggering event to occur. As looking up the history
takes a long time, the following triggering event usually
happens quickly, and Domino does not need to wait for a
long time. If the triggering event is the hit of the prefetched
cache block, Domino continues to prefetch from the already-
found stream, and otherwise, Domino attempts to find a new
stream. In case no match is located in the history for the
two lookups, Domino does nothing and waits for the next
triggering event to occur.

At any point in time, Domino has several active streams. If
a miss occurs, Domino finds a new stream and replaces one
of the old streams with it (round robin). In case a prefetch hit
occurs, Domino continues to prefetch from the active stream
that is responsible for the prefetch hit. Moreover, this stream
becomes the most-recently-used stream in the LRU stack.

A. Background
STMS is the state-of-the-art temporal prefetcher, and

Domino is built upon it. STMS has a dedicated per-core His-
tory Table (HT) that stores the sequence of misses observed
by the core and a dedicated Index Table (IT) that for every
observed miss address has a pointer to its last occurrence
in the HT. The HT is a circular buffer, and the IT is a
bucketized hash table [36] managed with LRU replacement
policy. As both HT and IT require multi-megabyte storage
for STMS to have a reasonable coverage, both tables are
placed off chip in the main memory [10]. Consequently,
every access to these tables (read or update) should be sent
to the main memory, which is slow, and brings/updates a
cache block worth of data.

Figure 6 shows the timing of events with STMS [10].
Upon a cache miss, a request is sent to the main memory to
bring an entry of the IT that points to the last occurrence of
the cache miss in the HT. Whenever the entry is received,
STMS finds the pointer to the HT. Having the pointer,
another request is sent to the main memory to bring a cache
block worth of data from the HT. The data contains several

Core’s Primary Cache

Shared Last-Level Cache

Off-chip Memory

Miss A
Searching Row

Figure 6. Timing of events in state-of-the-art temporal data prefetcher
(i.e., STMS).

consecutive miss addresses that immediately followed the
last occurrence of the missed address. Upon receiving the
data, STMS sends prefetch requests for the addresses that
follow the miss address.

With this implementation and for every stream, the tem-
poral prefetcher needs to wait for two (serial) memory
requests to be sent (one to read the IT and one to read
the correct location of the HT) and their responses to come
back to the prefetcher before issuing prefetch requests for
the stream. The delay of the two off-chip memory accesses
is compensated over several prefetch requests of a stream if
the stream is long enough.

A row of the HT, which has a cache block worth of data,
contains a sequence of consecutive data misses as observed
by the core. As compared to the HT, IT is more complicated.
IT is indexed by a hash of a single miss address (e.g., STMS)
or two miss addresses (e.g., Digram). A row of the IT has
some tag-pointer pairs. The tag along with the row number
identifies a single miss address (or two miss addresses in
Digram) and the pointer points to the last occurrence of the
miss address(es) in the HT.

Every time a miss address is recorded in the end of the HT,
its pointer in the IT needs to be updated to point to the last
row of the HT. Unfortunately, the misses that are observed
close to each other are usually mapped to different rows
in the IT due to not being spatially correlated. As such,
updating the pointers requires several accesses to the IT,
which imposes off-chip bandwidth overhead and is time-
consuming. To reduce the pressure on the off-chip memory,
the state-of-the-art implementation of a temporal prefetcher
benefits from statistical updates for the IT. Randomly, for
every several index updates (e.g., eight), only one of them
is recorded in the IT. It has been shown that this implemen-
tation offers the level of performance similar to that of the
non-practical always-update implementation [10].

As both metadata tables are off-chip, the on-chip storage
requirement of the prefetcher is negligible. The prefetcher
needs only few kilobytes of per-core storage for recording
misses and replaying prefetch candidates.

Domino uses both one and two last triggering events for
prefetching. A naive implementation of Domino requires
two ITs and one HT. One IT points to the last occurrence

of every triggering event in the HT, and the other one
points to the last appearance of every pair of consecutive
triggering events in the HT. Compared to STMS and Digram,
the naive implementation of Domino requires one more
off-chip access per stream due to having two ITs, and as
such, significantly wastes precious off-chip bandwidth. In
this section, we detail a practical design for Domino that
requires a single IT that is indexed by a single triggering
event (and not two). Moreover, unlike STMS and Digram,
the practical design can prefetch the first address of a stream
in one round-trip memory access latency, which improves
the timeliness of the prefetcher.

B. Practical Implementation

Domino prefetcher relies on an Enhanced Index Table
(EIT) and an HT to record past triggering events and replay
the sequence of future data misses. As the size of these
two tables is very large (several megabytes), just like prior
work [10], both tables are stored in the main memory.

Domino prefetcher allocates a contiguous portion of the
physical address space for the two tables. Each core has a
dedicated address space for the tables. The allocated address
space is hidden from the operating system. The size of the
allocated address space depends on the requirements of the
workloads (it is usually several megabytes per core). As
Domino prefetcher requires two tables, it statically divides
the allocated address space into two parts. The start address
of the EIT is recorded in a register named EIT-Start, and
the start address of the HT is recorded in a register named
HT-Start.

The memory system has a particular read request that, like
an ordinary read request, fetches a block from memory but
instead of placing the fetched block into the cache, puts the
block into the prefetcher’s on-chip metadata storage. There
is no need to cache the content of the two tables in the cache
hierarchy because metadata accesses exhibit neither spatial
nor temporal locality.

Just like STMS and unlike Digram, the EIT in Domino is
indexed by a single miss address. Associated with every tag,
there are several address-pointer pairs, where the address is
a miss experienced by the core and the pointer is a location
in the HT. An (a, p) pair associated to a tag t indicates that
the pointer to the last occurrence of miss address t followed
by a is p. We refer to a tag and its associated address-pointer
pairs as a super-entry, and to an address-pointer pair as an
entry. Figure 7 shows the organization of Domino’s EIT.
Every row of the EIT has several super-entries, and each
super-entry has several entries (three in our configuration).
Domino keeps the LRU stack among both the super-entries
and entries within each super-entry. To better understand the
differences of Domino prefetcher’s organization and those of
the prior work, Figure 8 shows the structure of the metadata
tables of STMS, Digram, and Domino.

A B L D F A Q B A X C U

Row

C (U, P7) A (X, P6), (Q, P4), (B, P1)

B (A, P5), (L, P2)

F (A, P3)

The most recent super-entry in this row The most recent entry of ‘A’

P1 P2 P3 P4 P5 P6 P7

Figure 7. The details of the Enhanced Index Table in Domino prefetcher.

A B C X A Z Q B H L

A
B

 (Z, P4), (B, P1)

P1 P2 P3 P4 P5 P6

 (H, P6), (C, P2)

A, B
B, C
A, Z
B, H

P1
P2
P4
P6

A
B

P3
P5

Domino

Digram
STMS

Figure 8. The details of the Index and History tables of STMS, Digram,
and Domino.

Domino benefits from several storage elements next to
each core. These elements are (1) a buffer to record the
sequence of triggering events named LogMiss, (2) a buffer
to keep the prefetched cache blocks named Prefetch Buffer,
(3) a buffer that holds the sequence of addresses of an active
stream named PointBuf, and (4) a buffer named FetchBuf.

Recording. Upon a triggering event, the address of the
triggering event is appended to LogMiss. LogMiss has the
capacity of two cache blocks. When one cache block worth
of data is in LogMiss, Domino writes it to the end of the HT
in the main memory and statistically updates the pointers of
the written miss addresses in the EIT.

To update the EIT, for one out of every N triggering
events (e.g., eight) written into the HT, the corresponding
row of the EIT is fetched into FetchBuf. If a super-entry for
the triggering event is not found in the fetched row, a new
super-entry is allocated with the LRU policy. In the chosen
super-entry, Domino attempts to find an entry for the address
following the triggering event. If no match is found, a new
entry is allocated with LRU policy. The pointer field of the
entry is updated to point to the last row of the HT. Finally,
Domino updates the LRU stack of entries and super-entries.
Once Domino is done with the row, it is written back to the
EIT.

Replaying. Upon a successful use of a prefetched block,

Table I
EVALUATION PARAMETERS.

Parameter Value
Chip Four cores, 4 GHz

Core SPARC v9 ISA, 8-stage pipeline, out-of-order execution,
4-wide issue, 128-entry ROB, 64-entry LSQ

I-Fetch Unit 64 KB, 2-way, 2-cycle load-to-use, next-line prefetcher,
hybrid branch predictor, 16 K gShare & 16 K bimodal

L1-D Cache 64 KB, 2-way, 2-cycle load-to-use, 4 ports, 32 MSHRs
L2 Cache 4 MB, 16-way, 18-cycle hit latency, 64 MSHRs
Memory 45 ns delay, 37.5 GB/s peak bandwidth

Domino uses the active stream responsible for the prefetch
hit and issues the next item of the stream (using PointBuf).
Upon a cache miss, however, Domino prefetcher attempts
to find a new stream and replaces the least-recently-used
stream with it (which means discarding the contents of the
prefetch buffer and PointBuf related to the replaced stream).

To find a new stream, Domino uses the missed address
to fetch a row of the EIT. When the row is brought into
PointBuf, Domino attempts to find the super-entry associ-
ated with the missed address. The delay of the search is
tolerable because it is considerably smaller than the off-chip
latency [10]. In case a match is not found, nothing will be
done, and otherwise, a prefetch will be sent for the address
field of the most recent entry in the found super-entry to be
brought into the Prefetch Buffer.

When the next triggering event occurs (miss or prefetch
hit), Domino searches the super-entry and picks the entry for
which the address field matches the triggering event (might
not be the most recent entry). In case no match is found,
the stream is discarded and Domino uses the triggering event
to bring another row from the EIT, and otherwise, Domino
creates an active stream using the matched entry. It means
that Domino sends a request to read the row of the HT
pointed to by the pointer field of the matched entry to be
brought into PointBuf. Once the sequence of miss addresses
from the row of the HT arrives, Domino issues prefetch
requests to be appended to the Prefetch Buffer.

As both recording and replaying may require accessing
the tables, and since replaying is on the critical path but
the recording is not, Domino prefetcher prioritizes replay-
ing over recording. Only when replaying is done, Domino
prefetcher attempts to follow the steps necessary for record-
ing if it wants to access the tables.

IV. METHODOLOGY

Table I summarizes key elements of our methodology,
with the following sections detailing the processor parame-
ters, workloads, simulator, and evaluated designs.

A. Processor Parameters

The evaluated processor has four cores with 4 MB of last-
level cache (LLC). The cache hierarchy of each core includes
a 64 KB data and a 64 KB instruction cache. The 4 MB LLC

Table II
APPLICATION PARAMETERS.

CloudSuite

Data Serving Cassandra 0.7.3 Database
15GB Yahoo! Cloud Serving Benchmark

MapReduce-C Hadoop 0.20.2
Bayesian Classification Algorithm

MapReduce-W Hadoop 0.20.2
Mahout 0.4 Library

SAT Solver Cloud9 Parallel Symbolic Execution Engine
Four 5-byte and One 10-byte Arguments

Media Streaming Darwin Streaming Server 6.0.3
7500 Clients, 60GB Dataset, High Bitrate

Web Search Nutch 1.2/Lucene 3.0.1, 230 Clients
1.4 GB Index, 15 GB Data Segment

Web Server (SPECweb99)

Web Apache Apache HTTP Server v2.0, 16 K Connections
FastCGI, Worker Threading Model

Web Zeus Zeus Web Server v4.3
16 K Connections, FastCGI

Online Transaction Processing (TPC-C)

OLTP Oracle 10g Enterprise Database Server
100 Warehouses (10 GB), 1.4 GB SGA

is distributed among four slices. Cache line size is 64 bytes.
The chip has two memory controllers that provide up to
37.5 GB/s of off-chip bandwidth.

B. Workloads

We simulate systems running Solaris and executing the
workloads listed in Table II. We include a variety of
server workloads from competing vendors, including online
transaction processing, CloudSuite [37], and Web server
benchmarks. Prior work [1] has shown that these workloads
have characteristics representative of the broad class of
server workloads.

C. Simulation Infrastructure

We use a combination of trace-based and timing full-
system simulations to evaluate our proposal. Our trace-
based analyses use traces collected from Flexus with in-order
execution, no memory system stalls, and a fixed instruction-
per-cycle (IPC) of 1.0.

We estimate the performance of various designs using
Flexus full-system timing simulator [38]. Flexus timing sim-
ulator extends the Virtutech Simics functional simulator with
timing models of cores, caches, on-chip protocol controllers,
and interconnect. Flexus models the SPARC v9 ISA and is
able to run unmodified operating systems and applications.

We use the SimFlex multiprocessor sampling methodol-
ogy [39]. For each measurement, we launch simulations
from checkpoints with warmed caches and branch predictors
and run 300 K cycles to achieve a steady state of detailed
cycle-accurate simulation before collecting measurements
for the subsequent 150 K cycles. We use the ratio of
the number of application instructions to the total number
of cycles (including the cycles spent executing operating
system code) to measure performance; this metric has been
shown to accurately reflect overall system throughput of

multiprocessors [39]. Performance measurements are com-
puted with 95% confidence and an error of less than 4%.

D. Prefetchers’ Configurations

We consider seven systems, as follows:
Baseline. As a recent study [1] showed that simple data

prefetchers do not work for server workloads, the baseline
has no data prefetcher. The baseline benefits from a next-
line instruction prefetcher. All evaluated prefetchers are
implemented on top of the baseline.

Variable Length Delta Prefetcher. We include
VLDP [34] because it has similarities with the lookup
mechanism of our proposal. VLDP is a prefetcher that relies
on spatial correlation for prefetching and benefits from
multiple previous deltas (the difference of two successive
miss addresses in a page) for lookup. We equip VLDP with
16-entry DHB, 64-entry OPT, and three infinite-size DPTs.
As this prefetcher works based on spatial correlation, it is
orthogonal to our work and can be used together [22].

Irregular Stream Buffer. ISB [13] combines the use
of PC localization and address correlation. We implement
idealized PC/AC with an infinite-size history table. It has
been shown that the idealized PC/AC has significantly
better performance as compared to its practical implemen-
tation [13].

Sampled Temporal Memory Streaming. STMS [10]
records miss sequences in a global per-core HT and lo-
cates streams through an IT. It benefits from a stream-end
detection heuristic [10], [40] to reduce useless prefetches.
We implement STMS with infinite-size metadata tables.
Both HT and IT are located in the main memory. STMS
can track four active streams at any given point in time.
The sampling probability is set to 12.5% as suggested by
the original proposal. Other parameters are taken from the
original proposal.

Digram. Like STMS, Digram [21] stores misses in an
HT and locates streams through an IT. We include Digram
because, like Domino, it uses two misses for locating streams
(but unlike Domino it does not look up the history with one
miss address). We equip Digram with an infinite-size HT
and IT. Metadata tables are located in the main memory.
Digram can track four active streams at any given point in
time. Digram also benefits from the stream-end detection
mechanism. The sampling probability is set to 12.5%.

Domino. The EIT and HT are located off-chip in the main
memory. We set the size of the metadata tables based on
sensitivity analysis. LogMiss, Prefetch Buffer, PointBuf, and
FetchBuf are 128 B, 2 KB, 256 B, and 64 B, respectively.
Domino can track four active streams at any given point in
time. Domino benefits from the stream-end detection mech-
anism. The sampling probability is set to 12.5%, similar to
STMS and Digram.

Sequitur. Like prior studies of measuring repetitiveness
of access sequences [7], [18], [22], we use the Sequitur

25%

50%

75%

100%

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

32
M

%
of

 Pe
ak

 C
ov

er
ag

e

History Table Entries

 Data Serving

 MapReduce-C

 MapReduce-W

 Media Streaming

 OLTP

 SAT Solver

 Web Apache

 Web Search

 Web Zeus

Figure 9. The coverage of Domino prefetcher as a function of HT size.
Size of the EIT is unlimited.

hierarchical data compression algorithm [35] to identify
temporal prefetching opportunity for data miss sequences.
Sequitur is an algorithm that builds a grammar based on
the input. The production rules of the grammar are formed
in a way that capture repetitions in the input. Sequitur
repeatedly reads a symbol from the input and extends its
grammar accordingly. When a symbol is added, the grammar
is adjusted in a way that captures new repetitions caused
by the added symbol. We compare our prefetcher against
Sequitur to see what fraction of the opportunity it has
covered.

To have a fair evaluation, all prefetchers are trained
using L1-D miss sequences, and all prefetchers prefetch
into a small prefetch buffer near the L1-D cache with the
capacity of 32 cache blocks. The degree of prefetching for
all prefetchers is set to four.

V. EVALUATION

A. Sensitivity Analysis

The storage requirement. The effectiveness of Domino
prefetcher, or any other temporal prefetcher, directly depends
on the size of the history on which the predictions are
made. Figure 9 shows the coverage of Domino prefetcher
for different numbers of entries (i.e., cache misses) in the
HT for each workload. In this experiment, there is no
limit on the size of the EIT. As the number of entries in
the HT increases, the coverage of Domino prefetcher also
increases because the prefetcher is able to make more correct
predictions. Beyond 16 M entries, the coverage reaches its
peak, effectively exploiting the opportunity. As HT is placed
in the main memory, the space requirement is less important
than the coverage of the prefetcher. So, we decide to have
16 M entries (85 MB) in the HT. Note that every 12 entries
(addresses of triggering events) are placed into a row of the
HT.

Having determined the size of the HT, Figure 10 shows
the coverage of Domino prefetcher for different numbers of

0%

25%

50%

75%

100%

1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

%
of

 Pe
ak

 C
ov

er
ag

e

Enhanced Index Table Rows

 Data Serving

 MapReduce-C

 MapReduce-W

 Media Streaming

 OLTP

 SAT Solver

 Web Apache

 Web Search

 Web Zeus

Figure 10. The coverage of Domino prefetcher as a function of EIT size.
Size of the HT is 16 M entries.

rows in the EIT for each workload. HT has 16 M entries.
The coverage of Domino prefetcher reaches its peak when
the size of the EIT becomes 2 M rows. So we decide to have
an EIT with 2 M rows (128 MB). Note that both metadata
tables are stored in the main memory, and as such, they do
not impose space overhead to the processor.

B. Trace-based Evaluation

We compare Domino prefetcher against ISB [13],
VLDP [34], STMS [10], and Digram [21]. As a point of
reference, we also include the temporal opportunity mea-
sured using Sequitur [35]. VLDP is a spatial prefetching
technique while ISB, STMS, Digram, and Domino are
temporal prefetchers. For all temporal prefetchers except
Domino, we assume unlimited-size storage for metadata. For
Domino prefetcher, we limit the size of EIT to 2 M rows
and HT to 16 M entries.

Figure 11 shows the coverage and overpredictions for the
competing prefetching techniques when prefetching degree
is one. Covered misses are the ones that are successfully
eliminated by a prefetcher. Overpredictions are incorrectly
prefetched cache blocks, which cause bandwidth overhead
and potentially pollute the prefetch buffer. The incorrect
prefetches are normalized against the number of cache
misses in the baseline system.

On average, Domino offers 8% higher coverage as com-
pared to the second-best prefetcher (i.e., STMS) and covers
56% of data misses. With respect to overpredictions, Domino
is the second-best prefetcher (after Digram) across all work-
loads, except SAT Solver. Comparing Domino prefetcher
against Sequitur, which identifies the temporal opportunity in
the data miss sequence, Domino prefetcher captures slightly
more than 90% of the opportunity.

While Figure 2 shows that Digram, which benefits from
two-address lookups, has longer streams as compared to
STMS, Figure 11 shows that STMS has slightly higher
coverage as compared to Digram. To shed light on the
reasons behind this phenomenon, Figure 12 shows the

172%

0%
25%
50%
75%

100%
125%
150%

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

Se
qu

itu
r

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

Se
qu

itu
r

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

Se
qu

itu
r

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

Se
qu

itu
r

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

Se
qu

itu
r

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

Se
qu

itu
r

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

Se
qu

itu
r

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

Se
qu

itu
r

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

Se
qu

itu
r

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

Se
qu

itu
r

Data Serving MapReduce-C MapReduce-W Media Streaming OLTP SAT Solver Web Apache Web Search Web Zeus Average

%
Co

ns
um

pt
ion

s

Coverage Uncovered Overpredictions

Figure 11. Domino prefetcher compared to other prefetchers. Prefetching degree of all prefetchers is one. For all temporal prefetchers except Domino,
we assume unlimited-size history. For Domino prefetcher, we limit the size of EIT to 2 M rows and the HT to 16 M entries, respectively.

0%

20%

40%

60%

80%

100%

0 2 4 8 16 32 64 128 128+

Cu
m

 %
 of

 A
ll

Str
ea

m
s

Temporal Stream Length

 Data Serving

 MapReduce-C

 MapReduce-W

 Media Streaming

 OLTP

 SAT Solver

 Web Apache

 Web Search

 Web Zeus

Figure 12. Histogram of stream length with Sequitur.

histogram of stream length for various workloads obtained
using Sequitur analysis. Across all workloads, 10% to 47%
of streams have a length of less than or equal to two, for
which Digram cannot act. The significant majority of other
streams are also short (have a length of less than eight).
Unlike STMS, Digram consumes two accesses of a stream
before issuing prefetch requests. As most of the streams are
short, losing one prefetch request per stream has a significant
negative effect on the coverage of the prefetcher. While the
average stream length of Digram is larger than STMS, its
coverage is slightly less than that of STMS. That is why prior
work [21] picked STMS over Digram and concluded that
two-address lookup has no practical advantage over single-
address lookup.

Corroborating prior work [21], our results show that PC-
localized temporal prefetchers (e.g., ISB) are not useful
in the context of server workloads. PC-localized temporal
prefetchers suffer from two fundamental obstacles: (1) PC
localization breaks the strong temporal correlation among
the global miss addresses (see the results of Sequitur), and
(2) PC localization makes prefetchers predict the following
misses of a memory instruction, which may not be the
subsequent misses of the workload. Since server workloads

have extensive instruction working sets [1], the re-execution
of a specific memory instruction in the execution sequence
may take a long time. Therefore, the prefetched blocks may
be evicted before re-execution of the memory instruction.

VLDP performs poorly because, unlike LLCs, L1 caches
cannot significantly exploit the spatial correlation of data
accesses due to the low residency of data in the cache [41],
[42]. Sharing the metadata of different pages in a unified
history is another reason for the low accuracy of VLDP.

Prefetchers usually benefit from a prefetching degree
greater than one to improve the timeliness of the prefetch
requests (i.e., to have the prefetched blocks ready before the
processor actually requests for them). Figure 13 shows the
coverage and overpredictions of the competing prefetching
techniques when the prefetching degree is four. As compared
to Figure 11, overpredictions of many prefetchers have
increased significantly.

Just like the prefetching degree of one, Domino prefetcher
outperforms other prefetchers with respect to coverage. The
second-best prefetcher is STMS. In all workloads, Domino
either significantly outperforms STMS (e.g., 19% in OLTP)
or with similar coverage substantially lowers the overpredic-
tions. On average, Domino’s overpredictions are one-third of
those of STMS, and are close to those of Digram. The gap
between the overpredictions of STMS and Domino-Digram
grows with increasing the prefetching degree. It mainly
comes from the lookup mechanism of STMS. STMS looks
up history with a single miss address, and as such, frequently
picks wrong streams. At the beginning of a wrongly-chosen
stream, STMS prefetches as many incorrect cache blocks
as the prefetching degree. Meanwhile, Domino and Digram
often locate the correct stream using the two miss addresses
and avoid the overpredictions.

Increasing the degree of prefetching significantly in-
creases the possibility of early-eviction of prefetched cache
blocks in ISB. Therefore, compared to degree one, both
coverage and overpredictions have been worsen in this
prefetcher.

With prefetching degree greater than one, upon predicting

204% 204% 218% 208% 273% 202% 213% 215% 203%

0%
25%
50%
75%

100%
125%
150%
175%
200%

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

Data Serving MapReduce-C MapReduce-W Media Streaming OLTP SAT Solver Web Apache Web Search Web Zeus Average

%
Co

ns
um

pt
ion

s

Coverage Uncovered Overpredictions

Figure 13. Domino prefetcher compared to other prefetchers. Prefetching degree of all prefetchers is four. For all temporal prefetchers except Domino,
we assume unlimited-size history. For Domino prefetcher, we limit the size of EIT to 2 M rows and the HT to 16 M entries, respectively.

the next access in a page, VLDP uses the prediction as input
to the metadata tables to make more predictions. We found
that this approach is inaccurate for server workloads and
the results become less accurate as the prefetching degree
increases.

C. Cycle-Accurate Evaluation

Figure 14 shows the performance improvement of Domino
prefetcher along with ISB, VLDP, STMS, and Digram,
over a baseline with no prefetcher. All temporal prefetchers
except Domino have unlimited storage for metadata in the
main memory. For Domino prefetcher, we limit the size of
EIT to 2 M rows and HT to 16 M entries. The prefetching
degree for all prefetchers is four. The figure clearly shows
the ability of Domino prefetcher in boosting performance.

In eight out of nine workloads, Domino outperforms
other temporal prefetchers due to its higher coverage and/or
better timeliness. The average performance improvement of
Domino prefetcher over the baseline is 16%. The second-
best prefetcher is STMS with the average performance
improvement of 10%. As compared to VLDP, which is
a recently-proposed spatial prefetcher, Domino offers 7%
higher performance.

For most of the workloads, Domino provides a significant
performance improvement. Web Search and Media Stream-
ing have relatively high MLP, and hence, many of the misses
that prefetchers capture, are already fetched in parallel with
the out-of-order execution mechanism. Therefore, despite
high coverage, prefetchers are unable to boost the perfor-
mance of these workloads significantly. In MapReduce-W,
temporal streams identified by the examined prefetching
techniques are drastically short, and hence, the delay of
fetching metadata from memory cannot be amortized over
subsequent prefetches, resulting in less performance en-
hancement. SAT Solver produces its dataset on-the-fly during
the execution, and thus, does not have a static and well-
structured dataset [41]. Consequently, its memory accesses
are hard-to-predict and all techniques manifest low coverage
and high overpredictions, and accordingly, low performance

improvement.

D. Off-chip Bandwidth Overhead

Figure 15 shows the off-chip bandwidth overhead of
STMS, Digram, and Domino over the baseline with no
prefetcher. Out of the three prefetchers, STMS has the
highest and Digram and Domino have the lowest overhead.
STMS has the highest off-chip traffic because of its high
overprediction rate, as shown in Figure 13. Compared to
STMS, Domino consumes less off-chip bandwidth due to (1)
its low overprediction rate and (2) fewer metadata fetches,
as Domino finds correct streams with fewer memory ac-
cesses than STMS. Compared to Digram, while Domino has
slightly higher overprediction rate, it brings less metadata
because more often lookups can find a match in its EIT (cf.,
Figure 4).

Compared to other prefetching techniques, the bandwidth
requirement of temporal prefetchers is relatively high. For-
tunately, server workloads consume only a small fraction of
the available off-chip bandwidth offered by today’s commer-
cial processors [1]. Today’s quad-core processors provide
off-chip bandwidth, typically in the range of 37.5 GB/s [43]
to 85 GB/s [44]. Meanwhile, the most bandwidth-hungry
server workload (i.e., Web Apache) consumes only 8 GB/s
of the available bandwidth.

The unused bandwidth can be utilized by a temporal
prefetcher, like Domino, to improve the execution of server
workloads. Using Domino, the bandwidth utilization ranges
from 8.7% in MapReduce-C to 32.8% in Web Apache.
We conclude that Domino offers the highest performance
improvement with the lowest off-chip bandwidth overhead as
compared to the state-of-the-art global-miss-based temporal
prefetchers.

E. Spatio-Temporal Prefetching

VLDP relies on spatial correlation for prefetching while
Domino captures temporal correlation of data accesses. As
each technique targets different subset of misses, they can
be used orthogonally [22]. VLDP uses patterns that fall into

0%

10%

20%

30%

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

VL
DP ISB

ST
M

S
Di

gr
am

Do
m

in
o

Data Serving MapReduce-C MapReduce-W Media Streaming OLTP SAT Solver Web Apache Web Search Web Zeus GMean

Sp
ee

du
p

ov
er

 B
as

eli
ne

Figure 14. Performance improvement of Domino prefetcher compared with VLDP, ISB, STMS, and Digram. For temporal prefetchers except Domino,
we assume unlimited-size storage for history in the main memory. For Domino prefetcher, we limit the size of EIT to 2 M rows and the HT to 16 M
entries, respectively.

0%

50%

100%

150%

200%

STMS Digram Domino

Of
f-

Ch
ip

 T
ra

ffi
c O

ve
rh

ea
d

Prefetching Method

Incorrect Prefetches

Metadata Update

Metadata Read

Figure 15. Bandwidth overhead of STMS, Digram and Domino over the
baseline with no data prefetcher.

a single page and is able to prefetch unobserved misses but
is incapable of capturing consecutive misses that fall across
pages. Domino replays previously-observed miss sequences,
regardless of their spatial region in the memory, but is unable
to prefetch cold misses. Each technique captures a particular
type of misses, leaving the other type unpredicted.

To demonstrate the orthogonality of these techniques,
we implement both of them in a single system. We stack
Domino to a system that has VLDP. Domino trains and
prefetches on misses that VLDP cannot capture. As Fig-
ure 16 shows, there is a large fraction of misses that are
predictable solely by one of these techniques. On average,
the combination of VLDP and Domino can cover 43%/20%
more misses than VLDP/Domino alone.

The effectiveness of spatio-temporal prefetching dras-
tically varies across workloads. In Data Serving, spatio-
temporal prefetching efficiently increases the coverage of
VLDP and Domino by 37% and 30%, respectively. Mean-
while, spatio-temporal prefetching provides almost no ad-
vantage over Domino in OLTP. An extreme behavior is
observed in MapReduce-W, where the coverage of the com-
bination of VLDP and Domino is higher than the arithmetic
sum of the individual coverage of the two prefetchers.
We found that, in this case, the remaining misses of a

0%

20%

40%

60%

80%

100%

Data
Serving

Map
Reduce-C

Map
Reduce-W

Media
Streaming

OLTP SAT Solver Web
Apache

Web
Search

Web Zeus

Re
ad

 M
iss

 C
ov

er
ag

e

VLDP Domino VLDP+Domino

Figure 16. Spatio-Temporal prefetching.

system with VLDP has higher temporal correlation than the
original misses of the system without VLDP. With VLDP
as the baseline prefetcher, the length of temporal streams
extracted by Domino roughly doubles, which results in
higher coverage and effectiveness of the temporal prefetcher.

VI. RELATED WORK

Data prefetching is an active research area in computer
architecture. Thread-based prefetching techniques [12], [45],
[46], [47], [48], [49], [50], [51] exploit idle thread contexts
to execute threads that prefetch for the main program thread.
However, the extra resources the prefetcher threads need
may not be available when the processor is fully utilized.

Software-based techniques [7], [52], [53], [54], [55],
[56], [57], [58], [59] use compiler or programmer hints to
issue prefetch operations. However, the complicated access
patterns and fast changes in the dataset of big-data server
applications make prefetching more difficult for such ap-
proaches.

Complex access patterns in the context of hardware
prefetching are considered in many pieces of recent
work [60], [61], [62], [63], [64], [65]. Most of prior work
is either not temporal and/or is far from covering most
of the temporal opportunity. In this work, we proposed a
practical temporal data prefetcher and showed that it covers
a significant fraction of the temporal opportunity.

VII. CONCLUSION

Data misses are a major source of performance degra-
dation in server applications. Data prefetching is a tech-
nique for reducing the number of cache misses or their
negative effect. Among data prefetching techniques, tem-
poral prefetching has high potential in eliminating data
misses due to existence of high temporal correlation among
data accesses. Unfortunately, existing temporal prefetching
techniques fall significantly short of efficiency and cannot
capture the opportunity and minimize the number of data
misses. In this paper, we proposed Domino, a temporal data
prefetcher, and showed that it achieves more than 90% of
the theoretical opportunity.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable
comments. We appreciate the reviewers of IEEE CAL for
the positive feedback on the preliminary version of this
work [66]. The authors would like to thank members of
the IPM HPC center, especially Armin Ahmadzadeh, for
maintaining and managing the cluster that is used to conduct
the experiments. This work was supported in part by a grant
from Iran National Science Foundation (INSF). The research
of the third author was partially supported by the research
deputy of Sharif University of Technology.

REFERENCES
[1] M. Ferdman et al., “Clearing the Clouds: A Study of Emerging Scale-Out

Workloads on Modern Hardware,” in ASPLOS, 2012.
[2] P. Lotfi-Kamran et al., “Scale-Out Processors,” in ISCA, 2012.
[3] J.-L. Baer and T.-F. Chen, “An Effective On-chip Preloading Scheme to Reduce

Data Access Penalty,” in Supercomputing, 1991.
[4] T. Sherwood et al., “Predictor-Directed Stream Buffers,” in MICRO, 2000.
[5] N. P. Jouppi, “Improving Direct-Mapped Cache Performance by the Addition

of a Small Fully-associative Cache and Prefetch Buffers,” in ISCA, 1990.
[6] T. F. Wenisch et al., “Temporal Streaming of Shared Memory,” in ISCA, 2005.
[7] T. M. Chilimbi and M. Hirzel, “Dynamic Hot Data Stream Prefetching for

General-purpose Programs,” in PLDI, 2002.
[8] D. Joseph and D. Grunwald, “Prefetching Using Markov Predictors,” in ISCA,

1997.
[9] Y. Chou, “Low-Cost Epoch-Based Correlation Prefetching for Commercial

Applications,” in MICRO, 2007.
[10] T. F. Wenisch et al., “Practical Off-chip Meta-data for Temporal Memory

Streaming,” in HPCA, 2009.
[11] K. J. Nesbit and J. E. Smith, “Data Cache Prefetching Using a Global History

Buffer,” in HPCA, 2004.
[12] Y. Solihin et al., “Using a User-level Memory Thread for Correlation Prefetch-

ing,” in ISCA, 2002.
[13] A. Jain and C. Lin, “Linearizing Irregular Memory Accesses for Improved

Correlated Prefetching,” in MICRO, 2013.
[14] M. Ferdman and B. Falsafi, “Last-Touch Correlated Data Streaming,” in ISPASS,

2007.
[15] Z. Hu et al., “TCP: Tag Correlating Prefetchers,” in HPCA, 2003.
[16] Z. Hu et al., “Timekeeping in the Memory System: Predicting and Optimizing

Memory Behavior,” in ISCA, 2002.
[17] A.-C. Lai et al., “Dead-block Prediction & Dead-block Correlating Prefetchers,”

in ISCA, 2001.
[18] T. F. Wenisch et al., “Temporal Streams in Commercial Server Applications,”

in IISWC, 2008.
[19] T. M. Chilimbi, “On the Stability of Temporal Data Reference Profiles,” in

PACT, 2001.
[20] D. G. Perez et al., “Microlib: A Case for The Quantitative Comparison of Micro-

Architecture Mechanisms,” in MICRO, 2004.
[21] T. F. Wenisch, Temporal Memory Streaming. PhD thesis, Carnegie Mellon

University, 2007.

[22] S. Somogyi et al., “Spatio-Temporal Memory Streaming,” in ISCA, 2009.
[23] T. F. Wenisch et al., “Making Address-Correlated Prefetching Practical,” IEEE

Micro, 2010.
[24] R. Haring et al., “The IBM Blue Gene/Q Compute Chip,” IEEE Micro, 2012.
[25] O. Mutlu et al., “Address-Value Delta (AVD) Prediction: Increasing the Ef-

fectiveness of Runahead Execution by Exploiting Regular Memory Allocation
Patterns,” in MICRO, 2005.

[26] A. Roth et al., “Dependence Based Prefetching for Linked Data Structures,” in
ASPLOS, 1998.

[27] P. Ranganathan et al., “Performance of Database Workloads on Shared-Memory
Systems with Out-of-Order Processors,” in ASPLOS, 1998.

[28] M. Hashemi et al., “Accelerating Dependent Cache Misses with an Enhanced
Memory Controller,” in ISCA, 2016.

[29] Y. Chou et al., “Microarchitecture Optimizations for Exploiting Memory-Level
Parallelism,” in ISCA, 2004.

[30] J. F. Cantin et al., “Stealth Prefetching,” in ASPLOS, 2006.
[31] C. F. Chen et al., “Accurate and Complexity-Effective Spatial Pattern Prediction,”

in HPCA, 2004.
[32] S. Kumar and C. Wilkerson, “Exploiting Spatial Locality in Data Caches Using

Spatial Footprints,” in ISCA, 1998.
[33] S. Somogyi et al., “Spatial Memory Streaming,” in ISCA, 2006.
[34] M. Shevgoor et al., “Efficiently Prefetching Complex Address Patterns,” in

MICRO, 2015.
[35] C. G. Nevill-Manning and I. H. Witten, “Identifying Hierarchical Structure

in Sequences: A Linear-time Algorithm,” Journal of Artificial Intelligence
Research, 1997.

[36] T. H. Cormen et al., Introduction to Algorithms. McGraw-Hill Higher Education,
2001.

[37] CloudSuite. http://cloudsuite.ch.
[38] Flexus. http://parsa.epfl.ch/simflex/flexus.html.
[39] T. F. Wenisch et al., “SimFlex: Statistical Sampling of Computer System

Simulation,” IEEE Micro, 2006.
[40] M. Ferdman et al., “Temporal Instruction Fetch Streaming,” in MICRO, 2008.
[41] D. Jevdjic et al., “Die-Stacked DRAM Caches for Servers,” in ISCA, 2013.
[42] D. Jevdjic et al., “Unison Cache: A Scalable and Effective Die-Stacked DRAM

Cache,” in MICRO, 2014.
[43] INTEL R© XEON R© PROCESSOR E3-1220 V6. https://www.intel.com/content/

www/us/en/products/processors/xeon/e3-processors/e3-1220-v6.html.
[44] INTEL R© XEON R© PROCESSOR E7-8893 V4. https://www.intel.com/content/

www/us/en/products/processors/xeon/e7-processors/e7-8893-v4.html.
[45] C.-K. Luk, “Tolerating memory latency through software-controlled pre-

execution in simultaneous multithreading processors,” in ISCA, 2001.
[46] M. Annavaram et al., “Data Prefetching by Dependence Graph Precomputation,”

in ISCA, 2001.
[47] J. D. Collins et al., “Dynamic Speculative Precomputation,” in MICRO, 2001.
[48] J. D. Collins et al., “Speculative Precomputation: Long-range Prefetching of

Delinquent Loads,” in ISCA, 2001.
[49] M. Kamruzzaman et al., “Inter-core Prefetching for Multicore Processors Using

Migrating Helper Threads,” in ASPLOS, 2011.
[50] C. Zilles and G. Sohi, “Execution-based Prediction Using Speculative Slices,”

in ISCA, 2001.
[51] I. Atta et al., “Self-contained, accurate precomputation prefetching,” in MICRO,

2015.
[52] T. C. Mowry et al., “Design and Evaluation of a Compiler Algorithm for

Prefetching,” in ASPLOS, 1992.
[53] C.-K. Luk and T. C. Mowry, “Compiler-Based Prefetching for Recursive Data

Structures,” in ASPLOS, 1996.
[54] A. Roth and G. S. Sohi, “Effective Jump-pointer Prefetching for Linked Data

Structures,” in ISCA, 1999.
[55] E. Ebrahimi et al., “Techniques for Bandwidth-Efficient Prefetching of Linked

Data Structures in Hybrid Prefetching Systems,” in HPCA, 2009.
[56] M. H. Lipasti et al., “SPAID: Software Prefetching in Pointer- and Call-Intensive

Environments,” in MICRO, 1995.
[57] A. Fuchs et al., “Loop-aware memory prefetching using code block working

sets,” in MICRO, 2014.
[58] J. Lu et al., “The Performance of Runtime Data Cache Prefetching in a Dynamic

Optimization System,” in MICRO, 2003.
[59] Z. Wang et al., “Guided Region Prefetching: A Cooperative Hardware/Software

Approach,” in ISCA, 2003.
[60] J. Kim et al., “Path Confidence Based Lookahead Prefetching,” in MICRO, 2016.
[61] D. Kadjo et al., “B-Fetch: Branch Prediction Directed Prefetching for Chip-

Multiprocessors,” in MICRO, 2014.
[62] P. Michaud, “Best-Offset Hardware Prefetching,” in HPCA, 2016.
[63] S. H. Pugsley et al., “Sandbox Prefetching: Safe Run-time Evaluation of

Aggressive Prefetchers,” in HPCA, 2014.
[64] X. Yu et al., “IMP: Indirect Memory Prefetcher,” in MICRO, 2015.
[65] Y. Ishii et al., “Access Map Pattern Matching for Data Cache Prefetch,” in

Supercomputing, 2009.
[66] M. Bakhshalipour et al., “An Efficient Temporal Data Prefetcher for L1 Caches,”

IEEE CAL, 2017.

http://cloudsuite.ch
http://parsa.epfl.ch/simflex/flexus.html
https://www.intel.com/content/www/us/en/products/processors/xeon/e3-processors/e3-1220-v6.html
https://www.intel.com/content/www/us/en/products/processors/xeon/e3-processors/e3-1220-v6.html
https://www.intel.com/content/www/us/en/products/processors/xeon/e7-processors/e7-8893-v4.html
https://www.intel.com/content/www/us/en/products/processors/xeon/e7-processors/e7-8893-v4.html

	Introduction
	Motivation
	The Proposal
	Background
	Practical Implementation

	Methodology
	Processor Parameters
	Workloads
	Simulation Infrastructure
	Prefetchers' Configurations

	Evaluation
	Sensitivity Analysis
	Trace-based Evaluation
	Cycle-Accurate Evaluation
	Off-chip Bandwidth Overhead
	Spatio-Temporal Prefetching

	Related Work
	Conclusion
	References

