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Abstract—Server workloads frequently encounter L1-D cache misses, and hence, lose significant performance potential. One way to reduce
the number of L1-D misses or their effect is data prefetching. As L1-D access sequences have high temporal correlations, temporal prefetching
techniques are promising for L1 caches. State-of-the-art temporal prefetching techniques are effective at reducing the number of L1-D misses,
but we observe that there is a significant gap between what they offer and the opportunity. This work aims to improve the effectiveness of
temporal prefetching techniques. To overcome the deficiencies of existing temporal prefetchers, we introduce Domino prefetching. Domino
prefetcher is a temporal prefetching technique that looks up the history to find the last occurrence of the last one or two L1-D miss addresses
for prefetching. We show that Domino prefetcher captures more than 87% of the temporal opportunity at L1-D. Through evaluation of a 16-core
processor on a set of server workloads, we show that Domino prefetcher improves system performance by 26% (up to 56%).

Index Terms—Server workloads, L1-D misses, data prefetching, temporal correlation.
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1 INTRODUCTION

Server workloads have vast datasets beyond what can
be captured by on-chip caches of modern processors [1], [2].
Consequently, server workloads encounter frequent cache
misses during their execution. The cache misses prevent server
processors from reaching their peak performance, because cores
are idle waiting for the data to arrive. Specifically, L1-D cache
misses are responsible for a significant performance degradation
in server workloads.

Data prefetching is a historical approach to eliminate cache
misses or reduce their effect. While it has been shown that
simple prefetching techniques, such as stride prefetching,
are ineffective for server workloads [1], more advanced data
prefetchers may eliminate or reduce the effect of L1-D cache
misses in such workloads. One of the promising prefetching
techniques, especially for L1 caches, is temporal prefetching [3],
[4]. In temporal prefetching, the sequence of past cache
misses/accesses is used to predict future cache misses.

While existing temporal data prefetchers are useful at
eliminating cache misses, we observe that there is a significant
gap between what they offer and what opportunity analysis
shows for temporal prefetching. Figure 1 shows the opportunity
for temporal prefetching in L1-D and what idealized forms of
STMS [3] and ISB [4], two state-of-the-art temporal prefetchers,
offer for several server workloads. We use the Sequitur hierarchi-
cal data compression algorithm [5] to identify the opportunity of
temporal prefetching. While STMS looks for temporal correlation
in the global miss sequence, ISB applies temporal correlation
to the PC localized miss sequences.1 As the figure clearly shows,
there is a significant gap between the opportunity and what
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1. While ISB is originally proposed to be applied to the PC localized LLC ac-
cess sequences, for fairness, we apply it to the PC localized L1 miss sequences.
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Fig. 1. Coverage of idealized forms of two state-of-the-art temporal
prefetchers versus the opportunity.

idealized forms of existing state-of-the-art temporal prefetchers
offer across many workloads. On average, the best state-of-the-
art temporal prefetcher captures less than 72% of the opportunity.

This work aims to improve the effectiveness of temporal
prefetching techniques. Corroborating prior work [6], our studies
show that PC localization is not useful for temporal correlation in
server workloads. Moreover, most of existing temporal prefetch-
ing techniques (e.g., [3]) rely on a single miss address to lookup
the history to identify a temporal stream. Our analysis shows that
a single miss address cannot always locate the right stream in the
history. To overcome these limitations, we propose a temporal
prefetcher, named Domino, that uses a combination of one and
two previous miss addresses to lookup the global history and
prefetches the next address. We show that Domino prefetcher
captures most of the temporal opportunity and performs better
than the state-of-the-art temporal prefetchers at L1 data caches.

2 MOTIVATION

In this section, we reduce the problem of temporal prefetching to
predicting the next miss based on the previously-observed miss
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Fig. 2. The fraction of lookups that result in a correct prediction over all
lookups that find a match in the history, as a function of the number of
addresses that they attempt to match.
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Fig. 3. The fraction of lookups that find a match in the history over all lookups,
as a function of the number of addresses that they attempt to match.

sequence. Figure 2 shows the fraction of lookups that lead to a
correct prediction over all lookups that find a match in the history,
as a function of the number of addresses that the lookup attempts
to match. As the figure shows, the fraction of lookups that lead to
a correct prediction is low if lookups match only a single address.
So, temporal prefetchers that rely on just one miss address to
look up the history (e.g., [3]), frequently prefetch incorrectly.

Moreover, Figure 3 shows the fraction of lookups that find a
match in the history as the number of addresses that they match
increases. As expected, the number of lookups that find a match
reduces as the number of matching addresses increases. So,
temporal prefetchers that rely on a couple of misses to lookup
the history (e.g., Digram [6]), miss significant opportunity due
to lack of finding a match in the previously-observed misses.

Based on these observations, we propose Domino. Logically,
Domino prefetcher looks up the history with the last N misses.
If a match is found, Domino issues a prefetch, and otherwise, it
looks up the history with one fewer miss, in a recursive manner.
We found that, except for one workload, increasing N beyond
two yields little improvement in coverage and accuracy of the
prefetcher, and as such, we choose N = 2.

3 THE PROPOSAL

Domino prefetcher relies on two per-core tables to record past
L1-D misses and replay the sequence of future L1-D misses. We
refer to these two tables as Miss History Tables (MHTs).

As a result of high coverage and low overprediction rate,
Domino prefetcher directly prefetches into L1-D caches. It
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Fig. 4. Logical view of the miss history tables (MHTs).

means that Domino prefetcher does not need a special storage
for keeping the prefetched cache blocks. It only requires a
storage for the meta-data (i.e., the history) that guides it what
to prefetch. Also, Domino prefetcher takes action (i.e., looks up
the history and attempts to prefetch cache blocks) both on L1-D
cache misses and on accesses to already prefetched cache blocks.
As a result, Domino prefetcher requires one bit per L1-D cache
block that indicates whether the cache block is prefetched or not.

Using the triggering events (i.e., cache misses and accesses
to the prefetched blocks), Domino predictor constructs two
miss history tables (MHTs). An entry in an MHT associates past
triggering events to a future L1-D miss. One table associates a
single triggering address to a future miss address and the other
one associates two consecutive triggering addresses to a future
miss. We refer to the former as MHT-1 and the latter as MHT-2.
Figure 4 shows the logical view of the history tables.

An entry in an MHT has tags (one tag in MHT-1 and two
tags in MHT-2), a prediction field, and a valid bit. The tag stores
part of the identifier that is used for the lookup but has not been
used as the index; the prediction is the future miss address, and
the valid bit determines if this entry has valid data. Note that
for MHT-2, we hash the two triggering addresses (we use a
simple XOR for the hash function) to form a single identifier
and use the identifier to look up MHT-2, but store the tags of
both addresses in the table.

Recording. Upon a triggering event, we use the previous
triggering address, which is stored in a special buffer named
PreMiss, to look up MHT-1. Domino predictor updates the row
with writing part of PreMiss as tag and the current triggering
address as the prediction. Domino predictor also sets the valid
bit of the row. Moreover, Domino predictor uses the hash of
the two previous triggering addresses to look up MHT-2. The
second previous triggering address is stored in a special buffer
named Pre2Miss. The predictor updates the row with parts of
Pre2Miss and PreMiss bits as the tags and the current triggering
address as the prediction. It also sets the valid bit of the row.
Finally, the predictor updates PreMiss and Pre2Miss.

Replaying. As a result of low overprediction rate, Domino
prefetcher issues prefetches directly into the L1-D cache. Upon
a triggering event (either an L1-D miss or a successful use of a
prefetched block), the Domino prefetcher looks up the MHT-1
with the address of the triggering event and MHT-2 with the
hash (i.e., XOR) of the address of the triggering event and
the content of PreMiss. If MHT-2 lookup results in a match,
regardless of the status of the MHT-1 lookup, a prefetch request
will be sent for the prediction in MHT-2. Otherwise, if MHT-1
lookup results in a hit, a prefetch request will be sent for the
prediction in MHT-1. If the lookups of both MHT-1 and MHT-2
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TABLE 1
Evaluation parameters.

Parameter Value

Processing Nodes
UltraSPARC III ISA, Sixteen 3 GHz OoO cores
8-stage pipeline, 4-wide dispatch/retirement
128-entry ROB, 48-entry LSQ

L1-I Caches 32KB, 2-way, 2-cycle load-to-use, PIF-enabled [7]
L1-D Caches 32KB, 2-way, 2-cycle load-to-use

L2 NUCA Cache Unified, 8 MB, 16-way, 64 MSHRs
20-cycle hit latency

Main Memory 40 ns access latency, 64-byte transfers
Interconnect 4×4 2D mesh, three cycles per hop

fail to find a match, no prefetch request will be sent.
As both recording and replaying require access to the tables,

and due to the fact that replaying is on the critical path but the
recording is not, Domino prefetcher prioritizes replaying over
recording. Only when replaying is done, Domino prefetcher
attempts to follow the steps necessary for recording.

Prefetching Degree. Just like other prefetchers, Domino
prefetcher may issue more than one prefetch request on a
triggering event by using the already prefetched address to
look up the tables. While increasing the degree of prefetching
enhances the timeliness of prefetch requests, it may decrease
the accuracy of the prefetcher. To overcome the inaccuracy
of multi-degree prefetching, Domino just uses MHT-2 for
additional prefetch requests. Although the process of issuing
additional prefetch requests can be repeated as long as the
predicted pattern is found in MHT-2, empirically we found that
allowing up to three extra prefetch requests is a good choice for
preserving both accuracy and timeliness.

4 METHODOLOGY

Table 1 summarizes key elements of our methodology. Our
target is a 16-core processor with 8 MB of last-level cache. Cores
have 32 KB L1-I and L1-D caches. Cache line size is 64 bytes.

We use server workloads from CloudSuite [8]. The
workloads include Data Serving, MapReduce, Media Streaming,
SAT Solver, Web Frontend, and Web Search. We consider two
MapReduce workloads – text classification (MapReduce-C) and
word count (MapReduce-W).

We estimate the performance of various processor designs us-
ing Flexus full-system simulator [9]. Flexus uses the SimFlex mul-
tiprocessor sampling methodology [10]. Our samples are drawn
over an interval of 10 seconds (30 seconds for Media Streaming)
of simulated time. For each measurement, we launch simulations
from checkpoints with warmed caches and branch predictors,
and run 450 K cycles to achieve a steady state of detailed cycle-
accurate simulation before collecting measurements for the sub-
sequent 50 K cycles. Performance measurements are computed
with 95% confidence and an average error of less than 5%.

As we want to evaluate prefetching algorithms, we devote
infinite area for storing the meta-data of all prefetchers. We
evaluate and compare Domino with the following prefetchers.

Irregular Stream Buffer. ISB [4] combines the use of PC localiza-
tion and address correlation. We implement idealized PC/AC
with an infinite-size zero-cycle history table. It has been shown
that the idealized PC/AC has significantly better coverage and
accuracy as compared to its practical implementation [4]. Other
parameters are taken from the original proposal [4].

Sampled Temporal Memory Streaming. STMS [3] records miss
sequences in a global per-core history buffer (named CMOB)
and locates streams through an index table. STMS employs a
fully-associative buffer next to an L1 cache (named SVB) and
puts the prefetched blocks in it for preventing cache pollution. It
also benefits from a stream-end detection mechanism to reduce
pollution. We implement STMS with infinite-size zero-cycle
CMOB, index table, and SVB. As all meta-data tables are
located on-chip, we set the sampling probability to 100%. Other
parameters are taken from the original proposal [3].

Variable Length Delta Prefetcher. We include VLDP [11] because
it has similarities with the lookup mechanism of Domino. Unlike
Domino, VLDP is a prefetcher that relies on spatial correlation
for prefetching and benefits from multiple previous deltas (the
difference between two successive miss addresses in a page) for
lookup. We equip VLDP with 16-entry DHB, 64-entry OPT, and
three infinite-size DPTs. The delay of all components is set to
zero. Other parameters are taken from the original proposal [11].

Digram. Like STMS, Digram [6] stores misses in CMOB and
locates streams through an index table. We include Digram
because, like Domino, it uses two misses for locating streams
(but unlike Domino it does not look up the history with one miss
address). We equip Digram with an infinite-size fully-associative
SVB, and infinite-size CMOB and index table (all with zero
latency). We also add STMS’ stream-end detection mechanism
to Digram. Other parameters are taken from the original
proposal [6].

5 EVALUATION RESULTS

Figure 5 shows the coverage and overpredictions of the compet-
ing prefetching techniques. Covered misses are the ones that suc-
cessfully are eliminated by a prefetcher (not necessarily restricted
to the next miss). Overpredictions are incorrectly prefetched
cache blocks, which cause bandwidth overhead and potentially
pollute the cache or the special buffer that is used for prefetching.
The incorrect prefetches are normalized against the number of
L1-D cache misses in the baseline processor. On average, Domino
increases the coverage of best-performing prefetcher (i.e., STMS)
by 10% and comes within 13% of an ideal temporal prefetcher
(i.e., Sequitur). With respect to overpredictions, Domino comes
within 3% of the best-performing prefetcher (i.e., Digram).

Corroborating prior work [6], our results show that PC
localized prefetchers (e.g., ISB) are not useful in the context of
server workloads. VLDP works poorly because, unlike LLCs,
L1 caches cannot greatly exploit the spatial correlation of data
accesses due to the low residency of data in the cache [12].
Digram loses significant opportunity because it cannot predict
for a stream until it observes two misses of that stream [6]. STMS
relies on just a single miss, and hence, frequently picks wrong
streams and prefetches incorrectly.

Figure 6 shows the performance improvement of Domino
prefetcher along with ISB, VLDP, Digram, and STMS, over
a baseline with no prefetcher. The average performance
improvement of Domino prefetcher over the baseline is 26%
(56% on MapReduce-C). The second best prefetcher is STMS
with the average performance improvement of 18%.

In six out of seven workloads, Domino outperforms other
prefetchers, thanks to its higher coverage. For SAT Solver,
Domino is the third best prefetcher. With SAT Solver, Domino
cannot frequently pick the right stream even using last two
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Fig. 5. Coverage and overpredictions of Domino prefetcher and the competing prefetchers.
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Fig. 6. Performance improvement of Domino prefetcher and the competing prefetchers over a baseline with no prefetcher.

misses. Consequently, it offers lower coverage and performance
improvement as compared to ISB, which separates streams based
on their PCs and finds patterns in localized streams successfully.

6 CONCLUSION

L1-D cache misses are a major source of performance
degradation in server workloads. Data prefetching is a technique
for reducing the number of cache misses or their effect. Among
various data prefetching techniques, temporal prefetching has
a potential to eliminate many L1-D cache misses due to the high
temporal correlation in the L1-D access sequence. Unfortunately,
existing temporal prefetchers cannot capture a significant part
of the opportunity. This work introduced Domino prefetcher
and showed that it captures 87% of the temporal opportunity
at L1-Ds. Through evaluation of a 16-core processor, we showed
that Domino prefetcher improves system performance by 26%
on average across a set of server workloads.
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