
Appears in IEEE Design & Test?

AXBENCH: A Multiplatform Benchmark Suite for
Approximate Computing

Amir Yazdanbakhsh Divya Mahajan
Hadi Esmaeilzadeh Pejman Lotfi-Kamran†

Alternative Computing Technologies (ACT) Lab
School of Computer Science, Georgia Institute of Technology

†School of Computer Science, Institute for Research in Fundamental Sciences (IPM)

{a.yazdanbakhsh, divya mahajan}@gatech.edu plotfi@ipm.ir hadi@cc.gatech.edu

http://axbench.org

Abstract— As we enter the dark silicon era, the benefits from
classical transistor scaling are diminishing. The current paradigm
of microprocessor design falls significantly short of the historical
cadence of performance improvements. To address these chal-
lenges, there is a need to go beyond traditional approaches and
explore unconventional paradigms in the computing landscape.
One such paradigm is approximate computing that embraces
imprecision and relaxes the traditional abstraction of ‘’near-
perfect‘’ accuracy across the system stack. Approximate com-
puting promises to deliver significant performance and energy
efficiency gains when small losses of quality are permissible. As
approximate computing attracts more attention, having a general,
diverse, and representative set of benchmarks to evaluate differ-
ent approximation techniques becomes necessary. In this paper,
we introduce AXBENCH, a general, diverse and representative
set of benchmarks for CPUs, GPUs, and hardware design. We
judiciously select and develop each benchmark to cover a diverse
set of domains such as financial analysis, machine vision, medical
imaging, machine learning, data analytics, scientific computation,
signal processing, image processing, robotics, and compression.
Furthermore, to enable a wide range of studies, each benchmark
is paired with three different input datasets. AXBENCH also
provides necessary annotations to mark the approximable regions
of code and the application-specific quality metric to assess the
output quality of each application.

Index Terms—GPU, CPU, Hardware Design, Benchmark, Ap-
proximate Computing.

I. INTRODUCTION

THE diminishing benefits from Dennard scaling and
Moore’s law have hampered the historical cadence of

performance improvements in microprocessor design. More
fundamentally, recent decline in the decades-long power-
scaling has led to the dark silicon problem [1]. The predica-
ment of dark silicon is hindering the devices to obtaining
benefits proportional the increase in available resources. This
paradigm shift in the computing landscape is driving both the
industry and research community to explore viable solutions
and techniques to maintain the traditional scaling of perfor-
mance and energy efficiency.

Approximate computing presents itself as an approach that
promises significant efficiency gains at the cost of some quality
degradation for applications that can tolerate inexactness in
their output. As approximate computing gains popularity as a

viable alternative technique to prolong the traditional scaling
of performance and energy efficiency improvements, it has
become imperative to have a representative set of benchmarks
for a fair evaluation of different approximation techniques.

A benchmark suite for approximate computing has to have
several features as we explain in the following paragraphs.
Diverse set of applications. As various applications in dif-
ferent domains like finance, machine learning, image process-
ing, vision, medical imaging, robotics, 3D gaming, numerical
analysis, etc. are amenable to approximate computation, a
good benchmark suite for approximate computation should be
diverse to be representative of all these applications.
Multiple platforms. Approximate computing can be applied
to various levels of the computing stack and through different
techniques. Approximate computing is applicable to both hard-
ware and software (e.g., [2], [3], [4]). A good benchmark suite
for approximate computation should be useful for evaluating
all of these possibilities. Being able to evaluate vastly different
approximation techniques using a common set of benchmarks
enables head-to-head comparison of different approximation
techniques.
Different input datasets. With approximate computing, the
natural question to ask is whether a specific technique will
work across a range of input datasets. Providing different input
datasets enables the users to perform a wide range of studies on
each benchmark and analyze the effect of their approximation
techniques across different input datasets.
Application specific quality metric. Each approximation
technique introduces different levels of quality loss in the
applications’ output. Therefore, it is inevitable for an ap-
proximation benchmark suite to include a quality metric to
evaluate the applications’ output quality loss. Furthermore,
as different applications generate different types of output,
they require different application quality metrics. For example,
image difference, which is an appropriate quality metric for
image processing applications, is not applicable to a robotic
application, which changes the location of a robotic arm.

This paper introduces AXBENCH, a diverse and represen-
tative set of benchmarks for evaluating various approximation
techniques in CPUs, GPUs, and hardware design. AXBENCH
covers diverse application domains such as machine learning,

? Copyright c© 2016 IEEE. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of
Record was published in IEEE Design & Test, vol. 34, no. 2, pp. 60–68, April 2017 (DOI: 10.1109/MDAT.2016.2630270).

http://ieeexplore.ieee.org/document/7755728/
https://doi.org/10.1109/MDAT.2016.2630270


JOURNAL OF DESIGN AND TEST 2

robotics, arithmetic computation, multimedia, and signal pro-
cessing. Moreover, AXBENCH comes with approximable re-
gion of benchmarks marked to facilitate evaluation of approxi-
mation techniques. Each benchmark is accompanied with three
different sized input datasets (e.g. small, medium, and large)
and an application specific quality metric. AXBENCH enables
researchers to study, evaluate, and compare a wider range of
approximation techniques on a diverse set of benchmarks in a
straightforward manner.

We evaluate three previously proposed approximate com-
putation techniques using AXBENCH benchmarks. We apply
Loop Perforation [4] and Neural Processing Units (NPUs) to
CPU [2] and GPU [5], and Axilog [3] to dedicated hardware.
We find that loop perforation results in large output quality
degradation and consequently, NPUs offer higher efficiency
on both CPUs and GPUs. Moreover, we observe that, on
CPU+NPU, significant opportunity remains to be explored by
other approximation techniques. On GPUs, however, NPUs
leverage most of the potential and leave little opportunity for
other approximation techniques. Finally, we find that Axilog
is effective at improving efficiency of dedicated hardware,
though significant opportunity remains to be explored by other
approximation techniques.

II. BENCHMARKS

One of the goals of AXBENCH is to provide a diverse set of
applications to further facilitate research and development in
approximate computing. Table I shows the benchmarks that are
included in AXBENCH, their target platforms, domains, and
the application specific quality metrics. In total, AXBENCH
consists of 29 applications from diverse set of domains.

A. Common Benchmarks
AXBENCH provides a set of C/C++ benchmarks for CPUs,

a set of CUDA benchmarks for GPUs, and a set of Ver-
ilog benchmarks for hardware design. Some algorithms are
amenable for execution on all platforms. For these algorithms,
AXBENCH provides all three implementations for CPUs,
GPUs, and hardware design.

Inversek2j is used in robotic and animation applications.
It uses the kinematic equation to compute the angles of 2-
joint robotic arm. The input dataset is the position of the end-
effector of a 2-joint robotic arm and the output is the two
angles of the arm.

Sobel takes an RGB image as the input and produces a
grayscale image in which the edges are emphasized.

B. Common CPU and GPU Benchmarks
For some algorithms, AXBENCH provides both C/C++ and

CUDA implementations for both CPUs and GPUs.
Black-Scholes is a financial analysis workload. It solves

partial differential equations to estimate the price for a port-
folio of European options. Each option consists of different
floating point values and the output is the estimated price of
the option. Jmeint is a 3D gaming workload. The input is
a pair of two triangles’ coordinates in the 3D space and the
output is a Boolean value which indicates whether the two
triangles intersect or not.

C. Common CPU and Hardware-Design Benchmarks

For some algorithms, AXBENCH provides both the C/C++
implementation for execution on CPUs and the Verilog imple-
mentation for hardware design.

Forwardk2j is used in robotic and animation applications.
It uses kinematic equations to compute the position of a robotic
arm in a two-dimensional space. The input dataset consists of
a set of 2-tuple angles of a 2-joint robotic arm and the output
dataset is the computed (x,y)-position of the end-effector of
the arm.

K-means is widely used in machine learning and data
mining applications. It aims to partition a number of n-
dimensional input points into k different clusters. Each point
belongs to the cluster with the nearest mean. We use an RGB
image as the input. The output is an image that is clustered in
different color regions.

D. CPU Specific Benchmarks

Canneal is an optimization algorithm for minimizing the
routing cost of a chip. Canneal employs the simulated anneal-
ing (SA) technique to find the optimum design point. At each
iteration of the algorithm, Canneal pseudo-randomly swaps
the netlist elements and re-evaluates the routing cost of the
new placement. If the cost is reduced, the new placement will
be accepted. In order to escape from the local minimum, the
algorithm also randomly accepts a placement with a higher
routing cost. This process continues until the number of
possible swaps is below a certain threshold. The input to this
benchmark is a set of netlist element and the output is the
routing cost.

FFT is an algorithm that is used in many signal processing
applications. FFT computes the discrete Fourier transform of
a sequence, or its inverse. The input is a sequence of signals in
time domain and the output is the signal values in frequency
domain.

JPEG is a lossy compression technique for color images.
The input is an uncompressed image (RGB). The JPEG
algorithm performs a lossy compression and produces a similar
image with reduced file size.

E. GPU Specific Benchmarks

Binarization is an image processing workload, which is fre-
quently used as a pre-processor in optical character recognition
(OCR) algorithms. It converts a 256-level grayscale image to
a black and white image. The image Binarization algorithm
uses a pre-defined threshold to decide whether a pixel should
be converted to black or white.

Convolution operator can be used in a variety of domains
such as machine learning and image processing. One of the
application of convolution operator is to extract the feature
map of an image in deep neural networks. In the image
processing domain, it is used for image smoothing and edge
detection. Convolution takes an image as the input. The output
of the convolution is the transformed form of the input image.

FastWalsh is widely used in a variety of domains including
signal processing and video compression. It is an efficient



JOURNAL OF DESIGN AND TEST 3

algorithm to compute the Walsh-Hadamard transform. The
input is an image and the output is the transformed form of
the input image.

Laplacian is used in image processing for edge detection.
The output image is a grayscale image in which all the edges
are emphasized.

Meanfilter is used as a filter for smoothing (and removing
the noises from) an image. The meanfilter replaces all the
image pixels with the average value of their 3×3 window of
neighbors. Meanfilter takes as input a noisy image. The output
is the same image in which the noises are reduced.

Newton-Raphson is an iterative numerical analysis method.
This method is widely used in scientific applications to find
an approximation to the roots of a real-valued function. The
Newton-Raphson method starts with an initial guess of the
root value. Then, the method finds a better approximation of
the root value after each iteration.

SRAD is a method that is widely used in medical image
processing domain and is based on partial differential equa-
tions. SRAD is used to remove the correlated noise from the
image without destroying the important image features. We
evaluate this benchmark with a grayscale and noisy image of
a heart. The output is the same image with reduced noise.

F. Hardware-Design Specific Benchmarks

Brent-Kung is one of the parallel prefix form of carry look-
ahead adder. Brent-Kung is an efficient design in terms of area
for an adder. The input dataset for this benchmark is a set of
two random 32-bit integer numbers and the output is a 32-bit
integer sum.

FIR filter is widely used in signal processing domain.
One of the applications of FIR filter is to select the desired
frequency of a finite-length digital input. We use a set of
random values as the input dataset.

Kogge-Stone is one of the parallel prefix form of carry look-
ahead adder. Kogge-Stone adder is one of the fastest adder
design and is widely used for high performance computing in
industry. We use a set of random two 32-bit integer values
as input. The output is the summation of the corresponding
values.

Neural-Network is an implementation of a feedforward
neural network that approximates the Sobel filter. Such neural
networks are used in a wide variety of applications including
pattern recognition and function approximation. The bench-
mark takes as input an RGB image and the output is a
grayscale image whose edges are emphasized.

Wallace-Tree is an efficient design for multiplying two
integer values. The input is random 32-bit integer numbers
and the output is the product of the corresponding numbers.

G. Input Datasets

As mentioned before, one of the main concern in any
approximation technique is to find out whether the proposed
technique work across different input datasets. Moreover,
having multiple input datasets enable the users to thoroughly
analyze the effect of their approximation techniques on the
applications’ output quality. To address these concerns, each

TABLE I: The evaluated Benchmarks and their platforms,
domains, and quality metrics.

binarization GPU Image	Processing Image	Diff
blackscholes CPU,	GPU Finance Avg.	Relative	Error
brent-kung ASIC Arithmetic	Computation Avg.	Relative	Error
canneal CPU Optimization Avg.	Relative	Error
convolution GPU Machine	Learning Avg.	Relative	Error
fastwalsh GPU Signal	Processing Image	Diff
fft CPU Signal	Processing Avg.	Relative	Error
fir ASIC Signal	Processing Avg.	Relative	Error
forwardk2j CPU,	ASIC Robotics Avg.	Relative	Error
inversek2j CPU,	GPU,	ASIC Robotics Avg.	Relative	Error
jmeint CPU,	GPU 3D	Gaming Miss	Rate
jpeg CPU Image	Processing Image	Diff
kmeans CPU,	ASIC Machine	Learning Image	Diff
kogge-stone ASIC Arithmetic	Computation Avg.	Relative	Error
laplacian GPU Image	Processing Image	Diff
meanfilter GPU Machine	Vision Image	Diff
neural	network ASIC Machine	Learning Avg.	Relative	Error
newton-raph GPU Numerical	Analysis Avg.	Relative	Error
sobel CPU,	GPU,	ASIC Image	Processing Image	Diff
srad GPU Medical	Imaging Image	Diff
wallace-tree ASIC Arithmetic	Computation Avg.	Relative	Error

benchmark domainplatform Quality	Metric

benchmark in AXBENCH is accompanied with three different
sized (e.g. small, medium, and large) input datasets. The small
sized input dataset is provided to test the functionality of
the program. The medium sized input dataset is included to
explore and study different microarchitectural parameters for
CPU and GPU applications with MARSS×86 and GPGPU-
Sim, respectively. Finally, we include large dataset suitable for
execution on the actual hardware. For the image applications,
the small input dataset consists of ten different 512×512 pixel
images. The medium and large sized input dataset include
ten different 1024×1024 and ten different 2048×2048 pixel
images, respectively. In all the other applications, the small,
medium, and large sized input dataset include 212, 218, and 224

data points. Having different sized and diverse input datasets
for each benchmark facilitate the evaluation of approximation
techniques, enable the users to perform a wide range of studies,
and help to better realize the effect of approximation on the
applications.

H. Application Specific Quality Metric

In AXBENCH, we augment each application with a proper
application-specific quality metric. The application-specific
quality metric compares the output generated by the precise
and approximate version of an application and report the appli-
cation output quality loss. In total, we introduce three different
quality metrics: (1) average relative error, (2) miss rate, and (3)
image difference. We use image difference for applications that
produce image output. Image difference calculates the average
root-mean-square of the pixel differences of the precise and
approximate outputs. For applications that produce Boolean
outputs, we use miss rate to measure the fraction of correct
outputs. For applications that produce numeric outputs, we use
average relative error to measure the discrepancy between the
original and approximate outputs.



JOURNAL OF DESIGN AND TEST 4

I. Approximable Region Identification

AXBENCH comes with the initial annotations, which mark
the approximable region of code. The annotations only provide
high-level guidance about where the approximable regions are
and not how to approximate those regions. We introduce two
criteria to identify the approximable regions in AXBENCH.
An approximable region of code in AXBENCH must satisfy
these criteria: (1) it must be hot spot; and (2) it must tolerate
imprecision in its operations and data;
Hot spot. The intention of approximation techniques is to
trade off accuracy for higher gains in performance and energy.
Therefore the obvious target for approximation is the region of
code which either takes the most execution time or consumes
the highest energy of an application. We call this region hot
spot. The hot spot of an application contains the highest
potential for approximation. Note that, this region may contain
function calls, loops, complex control flows, and memory
operations.
Tolerance to imprecision. The identified approximable region
will undergo approximation during the execution. Therefore,
the AXBENCH benchmarks must have some application-level
tolerance to imprecision. For example, in jpeg any imprecision
on region of code that stores the meta-data in the output image
totally corrupts the output image. Whereas, imprecision in re-
gion of code that compresses the image (i.e., quantization) has
tolerance to imprecision and may only leads to some degree
of quality loss in the output image. In AXBENCH, we perform
the similar study for each benchmark to identify the region of
code which has tolerance to imprecision. The identified regions
commensurate with prior work on approximate computing [2],
[4], [6], [7].

J. Safety

Recent work on approximate programming languages [7],
[6], [8] introduce practical techniques to provide statistical
safety guarantees for approximation. However, as mentioned
in the previous section, one of the objective inAXBENCH,
is to only provide an abstraction above the approximation
techniques. This abstraction only provides guidelines about
where the potentials for approximation lies and not about how
to apply approximation to these regions. Therefore, we do
not provide any guarantees about the safety of the AXBENCH
applications when they undergo approximation. It is still the
responsibility of the users of AXBENCH to provide safety
guarantees for their approximation technique. Due to this
reason, as we evaluate various approximation techniques in
Section III, we use the safety mechanism that is proposed
for that approximation technique to provide safety in the
AXBENCH’s approximable regions.

III. EXPERIMENTAL RESULTS

This section shows how AXBENCH is effective in evaluating
previously proposed approximation techniques. For CPU and
GPU platforms, we evaluate loop perforation [4] and Neural
Processing Unit (NPU) [2], [5]. For dedicated hardware, we
evaluate Axilog [3]. We also include an Ideal accelerator that

magically eliminates approximable regions (i.e., zero delay,
energy, and area for approximable regions).

We use MARSS×86 cycle-accurate simulator for CPU eval-
uations. The core is modeled after the Nehalem microarchitec-
ture and operates at 3.4 GHz (Table II). We use McPAT to mea-
sure the energy usage of the benchmarks. We use version 3.2.2
of the GPGPU-Sim cycle-level simulator for GPU evaluations.
We use a default GPGPU-Sim’s configuration that closely
models an Nvidia GTX 480 chipset (Table III). We measure
the energy usage of GPU workloads using GPUWattch.
Finally, we use Synopsys Design Compiler version G-
2012.06 SP5 to synthesize and measure the energy usage of the
Verilog benchmarks. We use TSMC 45-nm multi-Vt standard
cells libraries.1

TABLE II: CPU microarchitectural parameters.
Processor: Fetch/Issue Width: 4/5, INT ALUs/FPUs: 6/6, Load/Store
Queue: 48-entry/32-entry, ROB Entries: 128, Issue Queue Entries: 36,
INT/FP Physical Registers: 256/256, Branch Predictor: Tournament 48
KB, BTB Sets/Ways: 1024/4, RAS Entries: 64, Dependence Predictor:
4096-entry Bloom Filter, ITLB/DTLB Entries: 128/256; L1 Data Cache
32 KB, 64B line, 8-Way, Latency: 2 cycles; L2 Cache 2 MB, 64B line,
8-Way, Latency: 20 cycles; Memory Latency: 200 cycles

TABLE III: GPU microarchitectural parameters.
Processor: 700 MHz, SMs: 16, Warp Size: 32, SIMD Width: 8,
Threads per Core: 1024, L1 Data Cache: 16KB, 128B line, 4-way,
LRU; Shared Memory: 48KB, 32 banks; L2 Unified Cache: 768KB,
128B line, 8-way, LRU; Memory: GDDR5, 924 MHz, FR-FCFS, 4
memory channels, Bandwidth: 177.4 GB/sec

A. CPU Platform

Figure 1 compares loop perforation and NPU accelerators
for improving speedup and energy efficiency of CPU bench-
marks. The maximum quality loss is set to 10%. We restrict
the degree of loop perforation and NPU invocations to limit
the quality loss to 10%.

The maximum speedup and energy reduction is registered
for inversek2j: loop perforation offers 8.4× speedup and
4.7× energy reduction and NPU offers 11.1× speedup and
21.1× energy reduction. The average speedup (energy re-
duction) for loop perforation and NPU is 2.1× and 2.7×
(1.7× and 3.2×), respectively. Across all benchmarks expect
kmeans and canneal, CPU+NPU offers higher speedup and
energy reduction as compared to CPU+Loop Perforation. The
approximable region in canneal and kmeans consists of few
arithmetic operations. Therefore, the communication overhead
outweights the potential benefits of NPU acceleration. While
NPUs are effective, there is over 30% gap between what
they offer and the Ideal, which may be leveraged by other
approximation techniques.

B. GPU Platform

Figure 2 compares loop perforation and NPU accelerators
for improving speedup and energy efficiency of GPU bench-
marks with 10% maximum quality degradation.

Across all benchmarks, GPU+NPU offers higher speedup
and energy reduction as compared to GPU+Loop Perforation.

1We use the medium input dataset for all the experiments.



JOURNAL OF DESIGN AND TEST 5

0.0×
0.5×
1.0×
1.5×
2.0×
2.5×
3.0×

S
p

ee
du

p

bla
ck

sc
hol

es

ca
nnea

l fft

fo
rw

ar
dk2

j

in
ve

rs
ek

2j

jm
ein

t
jp

eg

km
ea

ns
so

bel

gm
ea

n

5
.3

8
.4

9
.2

3
.6

4
.7

1
1

.1

1
0

.2

3
.8

6
.3

1
5

.8

4
.5

3
.9

CPU + Loop Perforation CPU + NPU Ideal

(a) Speedup

0.0×
0.5×
1.0×
1.5×
2.0×
2.5×
3.0×

E
ne

rg
y

R
ed

uc
ti

on

bla
ck

sc
hol

es

ca
nnea

l fft

fo
rw

ar
dk2

j

in
ve

rs
ek

2j

jm
ein

t
jp

eg

km
ea

ns
so

bel

gm
ea

n

3
.3

4
.7

6
.2

3
.1

5
.9

2
1

.1

3
.2

7
.4

3
.2

6
.6

2
5

.2

5
.8

4
.2

CPU + Loop Perforation CPU + NPU Ideal

(b) Energy Reduction

Fig. 1: Loop perforation [4] vs. NPU acceleration [2] vs. Ideal
on a CPU platform with 10% maximum quality degradation.

The maximum speedup and energy reduction is registered for
newton-raph (14.3×) and inversek2j (18.9×), respectively.
The average speedup (energy reduction) for loop perforation
and NPU is 1.1× and 2.3× (1.3× and 2.6×), respectively.

Unlike CPU+NPU, which only realizes part of the oppor-
tunity, GPU+NPU realizes most of the opportunity of approx-
imate computation. The difference between what NPUs offer
and that of an Ideal accelerator is small. As Figure 2 shows,
GPU+NPU realizes 97% (85%) of the speedup (energy re-
duction) opportunity, respectively. The reason is that GPUs
execute many threads in parallel to hide data-movement de-
lays. Consequently, massively parallel GPUs augmented with
neural accelerators achieve the peak potential of approximate
computation.

C. Dedicated Hardware

We evaluate Axilog hardware approximation technique [3]
using AXBENCH benchmarks. We set the maximum out-
put quality degradation to 10%. We apply Axilog to each
benchmark to the extent in which the 10% output quality
degradation is preserved. Figure 3 shows hardware synthesis
flow for baseline and approximate (Axilog [3]) circuits.

Figure 4 shows the energy and area reduction of applying
Axilog to the benchmarks. We do not include a graph for
speedup as Axilog does not affect the performance of the
benchmarks. Axilog is quite effective at reducing the energy
and area needed by the benchmarks. The energy reduction
across all benchmarks ranges from 1.1× in fir to 1.9× in

0.0×
0.5×
1.0×
1.5×
2.0×
2.5×
3.0×

S
p

ee
du

p

bin
ar

iza
tio

n

bla
ck

sc
hol

es

co
nvo

lu
tio

n

fa
st

wal
sh

in
ve

rs
ek

2j

jm
ein

t

la
pla

cia
n

m
ea

nfilte
r

new
to

n-ra
ph

so
bel

sr
ad

gm
ea

n

9
.8

1
4

.3

1
0

.0

1
4

.3

GPU + Loop Perforation GPU + NPU Ideal

(a) Speedup

0.0×
0.5×
1.0×
1.5×
2.0×
2.5×
3.0×

E
ne

rg
y

R
ed

uc
ti

on

bin
ar

iza
tio

n

bla
ck

sc
hol

es

co
nvo

lu
tio

n

fa
st

wal
sh

in
ve

rs
ek

2j

jm
ein

t

la
pla

cia
n

m
ea

nfilte
r

new
to

n-ra
ph

so
bel

sr
ad

gm
ea

n

3
.0

1
8

.9

1
4

.8

3
.4

2
1

.8

1
6

.1

3
.0

GPU + Loop Perforation GPU + NPU Ideal

(b) Energy Reduction

Fig. 2: Loop perforation [4] vs. NPU acceleration [5] vs. Ideal
on a GPU platform with 10% maximum quality degradation.

Verilog 
Code

Strict Timing 
Constraints 

Design 
Compiler PrimeTime VXSynthesized 

Netlist
Timing 

Violation

yes

Baseline 
Netlist

no

(a)

Timing 
Simulation

Quality 
Measurement

SDF File

Synthesized 
Approximate

 Netlist

Verilog 
Code

Strict & Relaxed 
Timing 

Constraints 

Design 
Compiler

Synthesis Phase Quality Observation Phase

Input Data Set

Quality 
Requirement 

Satisfied 

no

Final 
Approximate

 Netlist

yes

(b)

Fig. 3: Synthesis flow for (a) baseline and (b) approximate
circuits [3].

inversek2j with a geometric mean of 1.5×. The area reduction
ranges from 1.1× in fir to 2.3× in brent-kung with a
geometric mean of 1.9×.

Comparing Axilog against Ideal reveals that it only realizes
68% (75%) of the opportunity for reducing the energy (area).
While Axilog is effective at reducing the energy and area usage
of dedicated hardware, there is still a significant opportunity
for innovative approximate computation techniques at the
hardware level.

IV. RELATED WORK

Approximate computing. Recent work has explored various
approximation techniques across system stack and for different



6

0.0×
0.5×
1.0×
1.5×
2.0×
2.5×
3.0×

E
ne

rg
y

R
ed

uc
ti

on

br
en

t-k
ung fir

fo
rw

ar
dk2

j

in
ve

rs
ek

2j

km
ea

ns

ko
gg

e-
st

on
e

wal
la

ce
-tr

ee

neu
ra

l net
wor

k
so

bel

gm
ea

n

Axilog Ideal

(a) Energy Reduction

0.0×
0.5×
1.0×
1.5×
2.0×
2.5×
3.0×

A
re

a
R

ed
uc

ti
on

br
en

t-k
ung fir

fo
rw

ar
dk2

j

in
ve

rs
ek

2j

km
ea

ns

ko
gg

e-
st

on
e

wal
la

ce
-tr

ee

neu
ra

l net
wor

k
so

bel

gm
ea

n

3
.1

3
.1

Axilog Ideal

(b) Area Reduction

Fig. 4: Axilog [3] vs. Ideal in reducing (a) energy and (b)
area of dedicated hardware design with 10% maximum quality
degradation.

frameworks such as CPUs, GPUs, and hardware design that
include: (a) programming languages [7], (b) software [4], (c)
circuit-level [9], (d) approximate circuit synthesis [3], and (e)
neural acceleration [2], [5]. However, prior work does not
provide benchmarks for approximate computing. In contrast,
this work is an effort to address the needed demand for
benchmarking and workload characterization in approximate
computing. Distinctively, we introduce AXBENCH, a diverse
set of benchmarks for CPUs, GPUs, and hardware design
frameworks. AXBENCH may be used by different approximate
techniques to study the limits, challenges, and benefits of the
techniques.
Benchmarking and workload characterization. There is
a growing body of work on benchmarking and workload
characterization, which includes: (a) machine learning [10],
(b) neural network [11] (c) big data analytics [12], (d) het-
erogeneous computing [13], (e) scientific computing [14], (f)
data mining [15], and (g) computer vision [16]. However, our
work contrasts from all the previous work on benchmarking,
as we introduce a set of benchmarks that falls into a different
category. We introduce AXBENCH, a set of diverse and multi-
framework benchmarks for approximate computing. To the
best of our knowledge, AXBENCH is the first effort towards
providing benchmarks for approximate computing. AXBENCH
accelerates the evaluation of new approximation techniques
and provides further support for the needed development in

this domain.

V. CONCLUSION

As we enter the dark silicon era, it has become more crucial
than ever to explore alternative techniques so as to maintain the
traditional cadence of performance improvements. One such
alternative techniques is approximate computing that promises
to deliver significant performance and energy gains at the cost
of some quality degradation. As approximate computing gains
popularity in different computing platforms, it is important to
have a diverse, representative, and multi-platform set of bench-
marks. A benchmark suite with these features facilitates fair
evaluation of approximation techniques and speeds up progress
in the approximate computing domain. This work expounds
AXBENCH, a benchmark suite for approximate computing
across the system stack. AXBENCH includes benchmarks for
CPUs, GPUs, and hardware design design. Benchmarking is
of foundational importance to an emerging research direction
and AXBENCH provides the initial groundwork.

VI. ACKNOWLEDGMENTS

We thank Jongse Park, Bradley Thwaites, Anandhavel Na-
gendrakumar, Sindhuja Sethuraman, Abbas Rahimi, and other
members of the Alternative Computing Technologies (ACT)
Lab for their feedback and contributions. This work was in part
supported by a Qualcomm Innovation Fellowship, NSF award
CCF #1553192, Semiconductor Research Corporation contract
#2014-EP-2577, and gifts from Google and Microsoft.

REFERENCES

[1] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in ISCA,
2011.

[2] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural Accel-
eration for General-Purpose Approximate Programs,” in MICRO, 2012.

[3] A. Yazdanbakhsh, D. Mahajan, B. Thwaites, J. Park, A. Nagendrakumar,
S. Sethuraman, K. Ramkrishnan, N. Ravindran, R. Jariwala, A. Rahimi,
H. Esmaeilzadeh, and K. Bazargan, “Axilog: Language support for
approximate hardware design,” in DATE, 2015.

[4] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop perforation,”
in FSE, 2011.

[5] A. Yazdanbakhsh, J. Park, H. Sharma, P. Lotfi-Kamran, and H. Es-
maeilzadeh, “Neural Acceleration for GPU Throughput Processors,” in
MICRO, 2015.

[6] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “EnerJ: Approximate data types for safe and general low-
power computation,” in PLDI, 2011.

[7] J. Park, H. Esmaeilzadeh, X. Zhang, M. Naik, and W. Harris, “Flexjava:
Language support for safe and modular approximate programming,” in
23rd Symposium on Foundations of Software Engineering, 2015.

[8] M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying quantitative re-
liability for programs that execute on unreliable hardware,” in OOPSLA,
2013.

[9] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture
support for disciplined approximate programming,” in ASPLOS, 2012.

[10] O. D. Alcântara, Á. R. Pereira Junior, H. M. d. Almeida, M. A.
Gonçalves, C. Middleton, and R. B. Yates, “Wcl2r: a benchmark
collection for learning to rank research with clickthrough data,” 2010.

[11] T. Chen, Y. Chen, M. Duranton, Q. Guo, A. Hashmi, M. Lipasti, A. Nere,
S. Qiu, M. Sebag, and O. Temam, “Benchnn: On the broad potential
application scope of hardware neural network accelerators?” in IISWC,
Nov. 2012.



7

[12] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia,
Y. Shi, S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li, and B. Qiu,
“Bigdatabench: A big data benchmark suite from internet services,”
in High Performance Computer Architecture (HPCA), 2014 IEEE 20th
International Symposium on, Feb 2014, pp. 488–499.

[13] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in IISWC, 2009.

[14] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-M. W. Hwu, “Parboil: A revised
benchmark suite for scientific and commercial throughput computing,”
Center for Reliable and High-Performance Computing, 2012.

[15] R. Narayanan, B. Özisikyilmaz, J. Zambreno, G. Memik, and A. Choud-
hary, “Minebench: A benchmark suite for data mining workloads,” in
Workload Characterization, 2006 IEEE International Symposium on.
IEEE, 2006, pp. 182–188.

[16] S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia,
S. Belongie, and M. B. Taylor, “Sd-vbs: The san diego vision bench-
mark suite,” in Workload Characterization, 2009. IISWC 2009. IEEE
International Symposium on. IEEE, 2009, pp. 55–64.


	Introduction
	Benchmarks
	Common Benchmarks
	Common CPU and GPU Benchmarks
	Common CPU and Hardware-Design Benchmarks
	CPU Specific Benchmarks
	GPU Specific Benchmarks
	Hardware-Design Specific Benchmarks
	Input Datasets
	Application Specific Quality Metric
	Approximable Region Identification
	Safety

	Experimental Results
	CPU Platform
	GPU Platform
	Dedicated Hardware

	Related Work
	Conclusion
	Acknowledgments
	References

