
Iranian Journal of Science & Technology, Transaction B, Engineering, Vol. 30, No. B6, PP 735-748
Printed in The Islamic Republic of Iran, 2006
© Shiraz University

IMPROVING LOGIC-LEVEL REPRESENTATION OF TAYLOR
EXPANSION DIAGRAM USING ATTRIBUTED EDGES*

P. LOTFI-KAMRAN** AND Z. NAVABI
Electrical and Computer Engineering Faculty, PARDIS of Engineering Faculties, University of Tehran,

Tehran, I. R. of Iran, Email: plotfi@computer.org

Abstract– Formal verification of complex digital systems requires a mechanism for efficient
representation and manipulation of arithmetic as well as random Boolean functions. Although the
Taylor Expansion Diagram can be used effectively to represent arithmetic expressions at the vector
level, it is not efficient in the use of memory for representing bit-level logic expressions. In this
paper, we present modifications to TED that will improve its ability for logic representation while
maintaining its robustness in arithmetic representation. Our experimental results show a 30%
reduction in the number of nodes in some benchmarks.

Keywords– Formal verification, Taylor expansion diagram, attributed edge, register transfer level

1. INTRODUCTION

Increasing the size and complexity of digital designs has made it essential to address verification issues in
the early stages of the design cycle. This requires verification tools with efficient data structures capable
of representing designs at the RT-level.

Most formal verification tools need a design to be converted to a canonical data structure in order for
the formal verification algorithms to be used. Several data structures have been proposed to address this
need, however none of them, with the exception of TED [1-3], can handle designs at the vector-level.
Therefore, formal verification tools today do make use of bit-level representation for capturing a design,
and therefore have limitations in processing large designs. On the other hand, a graph-based representation
for designs at the RT-level, coupled with efficient algorithms, provides a mechanism for handling large
designs. However, TED, which has a good performance in representing vector-level designs, is not good at
representing Boolean expressions. Therefore, TED is not efficient for representing designs at the RT-level.
In fact, RT-level designs consist of both vector-level and logic-level parts. Many parts of an RT-level
design including its controller may be described by Boolean expressions. So, in addition to a good vector-
level representation, having a good Boolean function manipulation is essential for an RT-level data
structure. The focus of this paper is to introduce Attributed TED, a high-level graph-based representation
for the manipulation of RT-level descriptions. This representation is based on TED. This paper addresses
the mentioned shortcomings of TED for achieving a better data structure for RT-level representation and
formal verification. Experimental results demonstrate that Attributed TED yields better performance than
TED using a number of benchmark circuits.
This paper is organized as follows: The following section presents a brief overview of previous works in
this area. In Section 3, a brief overview of TED comes. In Section 4, our Attributed TED is introduced. In
Section 5, canonicity rules of Attributed TED are mentioned formally and it will be shown that this

∗Received by the editors November 29, 2005; final revised form April 26, 2006.
∗∗Corresponding author

P. Lotfi-Kamran / Z. Navabi

Iranian Journal of Science & Technology, Volume 30, Number B6 December 2006

736

structure is canonical. In Section 6, some examples are given using Attributed TED. In Section 7, we will
show that there are some cases in which Attributed TED is better than TED by a factor of 2. Experimental
results are discussed in Section 8, and the conclusion is presented in the last section.

2. PREVIOUS WORKS

Boolean functions are often represented and manipulated by Decision Diagrams (DDs). Ordered Binary
Decision Diagrams (OBDDs) [4] are the most commonly used form of decision diagrams in EDA
applications [5]. OBDDs are based on a decomposition of Boolean functions commonly called the
“Shannon expansion”. A function f can be decomposed in terms of a variable x as:

)1()0(=∧∨=∧= xfxxfxf (1)

Despite its widespread use, some classes of Boolean functions cannot be represented efficiently by
OBDDs [6, 7]. For representing these classes of Boolean functions other decision diagrams are proposed
and used. As an example, Ordered Functional Decision Diagrams (OFDDs) [8, 9] are proposed to better
represent XOR based logic [10]. OBDDs and their derivations have been successfully used in
manipulating gate-level designs, but have limitations in representing arithmetic circuits.

For representing arithmetic circuits, Word Level Decision Diagrams (WLDDs) are proposed. They
use decomposition methods similar to the decomposition of Boolean functions, but at the arithmetic-level.
MTBDDs [11, 12], EVBDDs [13], BMDs [14], HDDs [15], *BMDs [14], and K*BMDs [16] are examples
of WLDDs.

The multi Terminal Binary Decision Diagram (MTBDD) uses a decision graph like a BDD, but allows
arbitrary values on the terminal nodes. MTBDDs are very inefficient for representing functions yielding
values over a large range.

The Edge Valued Binary Decision Diagram (EVBDD) is the same as MTBDD, but incorporates
numeric additive weights on the edges in order to allow greater sharing of sub-graphs. Although EVBDDs
improve MTBDDs in many cases, there are still important classes of functions for which they have
unacceptable complexity. For example, EVBDDs representation of multiplication x * y grows
exponentially.

The Binary Moment Diagram (BMD) is based on a decomposition of functions commonly called the
“Moment expansion”. A function f can be decomposed in terms of a variable x as:

xxfxff ∂+==)0((2)

where)0()1(=−==∂ xfxff x .

Multiplicative Binary Moment Diagram (*BMD) is an extension of BMD to incorporate multiplicative
weights on the edges. For some classes of functions, EVBDDs are exponentially more compact than
*BMDs, but the reverse can also hold. To obtain the advantages of each, a hybrid form called “Kronecker
Multiplicative Binary Moment Diagram” (k*BMD) [16] has been proposed. In k*BMD, each variable has
an associated decomposition which can be any one of the three given by Eqs. (1-3). All functions, to be
represented, must follow a common variable ordering and every occurrence of a given variable must use
the same decomposition.

)1())1()0()(1(fffxf +−−= (3)

All WLDDs are graph-based representations of functions with a Boolean domain and integer range;
therefore an arithmetic function should be broken down into its bit-level format in order to be represented
by a WLDD.

Improving logic-level representation of Taylor…

December 2006 Iranian Journal of Science & Technology, Volume 30, Number B6

737

With increasing complexity of digital systems, the need for higher level abstraction becomes more
evident. TED [1-3] is proposed as an answer to this need. TED can be used for representing functions
with an integer domain and integer range. Therefore, in contrast to WLDDs, an arithmetic function should
not be broken down into bit-level in order to be represented.

Although TED has good performance in representing arithmetic equations, its weak Boolean function
manipulation is its main problem. When a design consists of vector-level and bit-level parts (including
Boolean parts), its TED occupies a large amount of memory. One solution is to use different Decision
Diagrams for representing different parts of a design. This solution leads to more difficulties in the
verification process. Also using two or more different decision diagrams makes it hard, almost impossible
to check the equivalency of two designs, since the equivalency of two designs does not mean that each of
their parts is necessarily equivalent.

The aim of this paper is to improve logic representation of TED. This paper provides a unique
representation for better representing typical algebraic equations as well as Boolean functions.

3. AN OVERVIEW OF TED

TED is a graph-based representation which uses the Taylor series as its decomposition method [1-3]. The
Taylor series of a real differentiable function f(x) around x=0 are:

L+′′′+′′+′+=)0(
!3

1)0(
!2

1)0()0()(32 fxfxfxfxf (4)

where)0(f ′ ,)0(f ′′ , and)0(f ′′′ are first, second, and third derivatives of function f around x=0
respectively. The decomposition will be performed recursively using Eq. (4).

Every node of a TED representation has a label that indicates its associated variable. As in most
canonical decision diagrams, e.g., OBDD, the variables of TED are ordered. The function of a node is
determined by the Taylor series expansions, according to Eq. (4). The out-degree of a node depends on
the order of the associated variable of that node. The out-degree of a terminal node is 0.

 Fig. 1. Decomposition in TED

Figure 1 shows TED decomposition of function f for variable x . In this paper, we refer to the k-th
derivative of a function rooted at a node as k-child of that node:)0(=xf is the 0-child,)0(=′ xf is the 1-
child,)0(=′′ xf is the 2-child, etc. We also refer to the corresponding edges as 0-edge (dotted), 1-edge
(solid), 2-edge (double), etc. From the Taylor expansion, it is evident that each edge has an implicit
multiplicative factor, i.e., x0 for the 0-edge, x1 for the 1-edge, x2/2 for the 2-edge, etc. In addition, each
edge in a TED has a multiplicative weight, which is computed from the Taylor expansions. Figure 2 shows
TED representation of x2+y.

X

1 X X2/2! X3/3!

f

F(0) F’(0) F’’(0) F(3)(0)

v

P. Lotfi-Kamran / Z. Navabi

Iranian Journal of Science & Technology, Volume 30, Number B6 December 2006

738

x

F = x2+y

F(
x=

0)
 =

 y

F’
(x

=0
) =

 0

F’
’(x

=0
) =

 2

y

10

2

F = x2+y
F’ = 2x
F’’ = 2

Fig. 2. TED decomposition of yx +2

It has been proven that with a special restriction on the order of variables, TED becomes a canonical

representation. For functions typically encountered in RTL specifications (e.g., x – y, x + y, x * y and xk for
arbitrary k, etc.), TED is linear in the number of variables. TED can also represent functions containing
both algebraic and Boolean expressions. To represent Boolean expressions, the following formulae should
be used [1-3]:

NOT(x) = a′ = 1 – a (5)

AND(a, b) = a ∧ b = a * b (6)

OR(a, b) = a ∨ b = a + b – a * b = a(1 – b) + b (7)

4. ATTRIBUTED TED

Representing Boolean functions is the main problem of TED. This means that the TED representation of a
Boolean function has a larger size when compared with BDD representation of the same function.
Consider the TED representation of three basic Boolean functions (AND, OR, NOT) in Fig. 3 and BDD
representation of these functions in Fig. 4.

a

1 1

b

0 1

a

b

0 1

a

NOT(1-a) AND(a*b) OR(a+b-a*b)

b

-1

-1

+1

0
0

1

1
0

1

1

1

1

a

0 1

b

0 1

a

b

0 1

a

NOT AND OR

 Fig. 3. TED representation of basic Boolean functions Fig. 4. BDD representation of basic Boolean functions

As shown, NOT and AND functions are presented with minimal nodes, but the OR function has some
extra nodes in comparison with its BDD. Since the OR function is one of the basic Boolean functions,
extra nodes would be produced during the process of TED construction for Boolean functions, and the size
of TED increases drastically. So improving the TED representation of the OR function would reduce the
size of TED representation of Boolean functions.

As explained, the TED of OR function is constructed according to Eq. (7), where ‘a’ and ‘b’ are two
valued integer variables (0 and 1). If we consider the ‘a’ variable as root, then two edges are originated
from it:

• 0-child, which is equal to ‘b’
• 1-child, which is equal to ’1 - b’.

Improving logic-level representation of Taylor…

December 2006 Iranian Journal of Science & Technology, Volume 30, Number B6

739

As ‘a’ and ‘b’ are two valued variables (0 and 1), ‘ b−1 ’ function logically is the complement of ‘b’.
This property can be used for graph reduction. Indeed, the sub-graph of ‘b’ representation can be shared
between 0-child and 1-child of the root node. This can be done by adding an attribute to the structure of
the edges. This attribute is used to show the complement of the following node. For example, the TED
representation of the OR function is converted to the graph shown in Fig. 5.

b

0 1

a

b
b

0 1

a

0
0

1
1

1

1 0 1

1
1

Fig. 5. Attributed TED representation of OR function

If an edge points to a sub-function which should be complemented, only the attribute of the edge is set

to indicate this. These edges are called attributed edges. This change should be done in such a way that the
Attributed TED remains canonical as the original TED. Although attributed edges have the advantage
shown here, their use must be restricted in order for the resulting structure to be canonical. We will show
how freedom in the use of attributed edges can cause two equivalent expressions to be represented
differently, by use of the example of expressions (8) and (9).

-x (8)

 1 – (x + 1) (9)

It is evident that expressions (8) and (9) are equal, but the TEDs with attributed edges of these two
equations are different. For the former, the TED of “–x” is created, but for the latter, the TED of “x + 1”
is created and then the attribute of the created TED is set true. As shown in Fig. 6, the two TEDs are not
the same.

x

0 1

x

1

-1

(a) (b)

0

1

1 1

1

Fig. 6. a) TED of expressions (8), b) TED of expressions (9)

In the next section, some rules are introduced for restricting the use of attributed edges and for

preserving the canonicity of the Attributed TED. It will be shown that canonical Attributed TED can
reduce the size of certain Boolean functions by a factor of 2.

5. CANONICITY RULES

Attributed TED remains canonical, if we follow rules discussed below.
1. Remove all 1-terminals in a TED graph. For representation of a 1-terminal, the edge leading to a 0-

terminal must be attributed.

P. Lotfi-Kamran / Z. Navabi

Iranian Journal of Science & Technology, Volume 30, Number B6 December 2006

740

2. If a 0-edge is attributed and its weight is 1, we remove the attribute of the 0-edge, negate the value
of weights of other neighboring edges, and instead attribute the incoming edge of that node.

Theorem 1: The above rules do not change the function corresponding to TED.
Proof: by Rule 1, we mean that a 1-terminal is replaced with a 0-terminal, and an attribute in the edges
pointing to it is set true to perform complementing. It is obvious that these modifications do not change
the function corresponding to the resulting TED.

Rule 2 needs more explanations. For complementing a function named f(x), 1 – f(x) should be
constructed (i.e., Eq. (5)). The Taylor series of 1 – f(x) is as follows:

L−−′′−′−−=−)0(
!3

1)0(
!2

1)0()0(1)(1)3(32 fxfxfxfxf (10)

By comparing Eq. (4) and (10), it is obvious that for calculating the complement of f(x), we should
complement its 0-edge (i.e., f(0)) to come up with 1 – f(0). Furthermore, we should negate the weights of
all other edges of this function. By Rule 2, we mean that attributed edges should not be used in the 0-edges
of the Attributed TED with weight 1. This is done so that all required attributes move as far up in the
Attributed TED as possible. This procedure is exemplified in Fig. 7 and discussed as follows: If the 0-edge
of a node has its attribute true and its weight is 1, it is complemented (i.e., the precedence of attribute is
higher than weight, so only if weight is 1, the function of that edge is complemented), we de-complement
the function of the node by resetting the attribute of the 0-edge and negating the weights of other edges,
and instead set the attribute of the incoming edge of that node itself.

W0=1 w1 w2
w3 -w1 -w2

-w3W0=1

F0 F1 F2 F3 F0 F1 F2 F3
Fig. 7. Exemplifying the procedure of Rule 2

Theorem 2: Attributed TED made by Rules 1 and 2 is canonical.
Proof: The proof of this theorem is conceptually straightforward. The proof proceeds by induction on the
size of the argument set of a function (f).

If the size of the argument set is 0, f must be a constant function. This constant function has a terminal
(T) and an edge with a weight (W) and an attribute (A). Let’s say that this constant function is represented
by two such graphs, G1(T1, W1, A1) and G2(T2, W2, A2). Since we have used Rule 1, a terminal value can
only be 0. So, the two graphs cannot be different in their terminal values (T1 = T2). So, if G1 and G2 are
different, either W1 and W2 or A1 and A2 are different. W1 and W2 cannot be different because both graphs
originated from the same TED and Rule 1 only changes attributes and not the weights. Note that because
f(x) is a constant, only Rule 1 can be applied to it. On the other hand, if G1 and G2 are to be different, A1
and A2 must be different. This would result in two different functions, which is contradictory to our
original assumption of having only one function.

The above discussion proved that Attributed TED representation of function f with k number of
variables when k is 0 is canonical. Now we will prove this theorem for all k greater than 0. For this
purpose we assume that functions of less that k variables have a canonical representation. Based on this

Improving logic-level representation of Taylor…

December 2006 Iranian Journal of Science & Technology, Volume 30, Number B6

741

assumption we will show that representation of functions of k variables are also canonical. Note that
function f is represented in Attributed TED by a node and several child functions of k-1 variables.

Now if the Attributed TED representation of f is not canonical, there must be two different G1 and G2
representations of it. According to our earlier assumption, the representations of all functions of the root’s
children are independently canonical. Figure 8 shows this decomposition. Merging functions of the root’s
children into the root forms the complete representation of f. In this formation, individual nodes of
functions of the root’s children remain unchanged, and the only possible change will be in the weights or
attributes of the edges that connect the children to the root.

The weights of G1 and G2 Attributed TED graphs of function f cannot be different, since these weights
are the greater common divisor of all weights of edges that connect children to the root. Similarly, based
on Rule 2, attributes affect all edges of G1 and G2 in the same way and cannot make these graphs different.
This means that the only possible difference between G1 and G2 is in their root’s label, which would make
two different functions if they were different. Since this contradicts our main assumption, G1 and G2 must
be the same.

f0-child f1-child f2-child f3-child

(W0,A0)

0-Child

(W1,A1) (W2,A2) (W3,A3)

1-Child 2-Child 3-Child

...

Root

Merging

f0-child f1-child f2-child f3-child ...

Fig. 8. Merging Root’s children into the Root

6. EXAMPLES

In this section, applications of the above rules are presented by use of several examples. Consider the TED
representation of the OR function in Fig. 3. The first step towards attributed representation is replacing 1-
terminals by 0-terminals. According to Rule 1 attributes of the edges which are pointing to terminals 1
should be set. This step is shown in Fig. 9b.

a

b b

0 1

-1

a

b b

0

-1

a

b b

0

+1

a

b

0

(a) (b) (c) (d)

0
1 1

11

0
1 1

1 1

11
0

1 1

0 1

1 1

Fig. 9. Steps of applying Rules 1 and 2 to the TED representation of OR function

Rule 2 implies that, the attribute of 0-edges are removed, weights of other neighboring edges are

negated and instead, the attribute of the incoming edge of that node is set. This rule applies to nodes that
have attributed 0-edge with weight 1. This step is shown in Fig. 9c. The last step is the merging of

P. Lotfi-Kamran / Z. Navabi

Iranian Journal of Science & Technology, Volume 30, Number B6 December 2006

742

redundant nodes. As shown in Fig. 9c, two b nodes are exactly similar and they can be merged. The result
and the final Attributed TED of the OR function is shown in Fig. 9d.

The efficiency of this method would be shown when the TEDs of more complex Boolean functions
are compared with the attributed ones. As an example, consider function cbaF ∨∧=)(. The TED of this
function is shown in Fig. 10a.

This graph can be reduced by applying the previous rules. Figure 10b shows the result graph after
applying Rule 1 and Fig. 10c shows the result graph after applying Rule 2. As shown, some redundant
nodes are generated in the graph after these conversions. The final step is merging the redundant nodes.
Figure 10d shows the final Attributed TED representation of cbaF ∨∧=)(.

a

b

cc

0 1

-1

a

b

cc

0

-1

a

b

cc

0

+1

a

b

c

0

(a) (b) (c) (d)

0

0

1 1

1

1

1

1

1

1
0

0
1 1 1

0
1

0
1

1

1

1

1

0

1

0 1

Fig. 10. Steps of applying Rules 1 and 2 to TED representation of cbaF ∨∧=)(

By comparing this graph and the initial TED representation graph, a gain of 25 percent is evident.

7. CASE STUDY

Lemma 1: The total number of nodes for representing i

n

i
xOR

1=
(OR of n different Boolean variables) by the

original TED is computed from the following recursive equation:
2)1()(+−= ndesTotalNumNondesTotalNumNo

TEDTED

Proof: For representing i

n

i
xOR

1=
 by TED, the following arithmetic equation should be constructed:

n

nnnn

xxxx
xxxxxxxxxxxxxxxxf

LLL

LLL

321

3211321312121

+−+
+−−−−−−−+++= −

To represent this equation by TED, we need a root node that is associated with variable x1. The root’s

children are)0(
1
=xf (0-child) and)0(1

1
=x

dx
df (1-child).

n

nnnn

xxx

xxxxxxxxxxxxxxxxf

LLL

LLL

32

432143242322)0(
1

+−+

+−−−−−−−++== −

n

nnnn

xxx

xxxxxxxxxxxxxxxx
dx
df

LLL

LLL

32

4321432423221
1

1)0(

−+−

−+++++++−−−== −

It is evident that)0(

1
=xf is i

n

i
xOR

2=
, therefore it needs)1(−ndesTotalNumNo TED TED nodes for its

construction. On the other hand,)0(1
1

=x
dx
df is i

n

i
xOR

2
1

=
− or)(

2
i

n

i
xORNOT

=
. We need another TED node with

Improving logic-level representation of Taylor…

December 2006 Iranian Journal of Science & Technology, Volume 30, Number B6

743

an associated variable being x2 for representing this function. The children of this new node are

)0,0(21
1

== xx
dx
df (0-child) and)0,0(21

21
== xx

dxdx
df (1-child).

n

nnnn

xxx

xxxxxxxxxxxxxxx
dx
df

LLL

LLL

43

543135343321
1

1)0,0(

−+−

−++++++−−−=== −

n

nnnn

xxx

xxxxxxxxxxxxxxx
dxdx

df

LLL

LLL

43

543135343321
21

1)0,0(

+−+

+−−−−−−+++−=== −

By comparing the above equations, we conclude:

)0,0(21
1

== xx
dx
df = i

n

i
xOR

3
1

=
− =)(

3
i

n

i
xOrNOT

=

This function is already constructed during generation of)0(

1
=xf . Also it is clear

that)0,0(21
21

== xx
dxdx

df is negation of the)0,0(21
1

== xx
dx
df (if the weight of)0,0(21

21
== xx

dxdx
df is w,

the weight of)0,0(21
1

== xx
dx
df is -w). So, by connecting an edge with negative weight to the node which

represents)0,0(21
1

== xx
dx
df , this function is constructed.

w
-w

f(x1=0)

f

x2

x1

x2

x3 x3

Fig. 11. TED of i

n

i
xOR

1=

So, the i

n

i
xOR

1=
 function is represented by:

2)1()(+−= ndesTotalNumNondesTotalNumNo
TEDTED

TED nodes.

Lemma 2: The total number of nodes for representing i

n

i
xOR

1=
(OR of n different Boolean variables) by the

Attributed TED is computed from the following recursive equation:

1)1()(+−= ndesTotalNumNondesTotalNumNo
ATEDATED

P. Lotfi-Kamran / Z. Navabi

Iranian Journal of Science & Technology, Volume 30, Number B6 December 2006

744

Proof: the proof is the same as Lemma 1, but the 1-edge of the root points to the)0(
1
=xf (i.e., 0-child),

while having its attribute true to indicate that this function is complemented.

Therefore, for construction of i

n

i
xOR

1=

1)1()(+−= ndesTotalNumNondesTotalNumNo

ATEDATED

Attributed TED node is needed.

f(x1=0)

x3

x2

x3

x1

f

Fig. 12. Attributed TED of i

n

i
xOR

1=

Theorem3: In representing a chain of OR gates, Attributed TED is better than the original TED by a factor
of 2. This can be deduced from Lemmas 1 and 2.

8. EXPERIMENTAL RESULTS

In this section, we describe experimental results that have been carried out on a PC Pentium 4 with 1
GByte of memory. All runtimes are given in CPU seconds. BDD, BMD, TED, and Attributed TED
packages are implemented by the authors with Visual C++ v6.

Table 1 provides a summary of the results obtained for several gate-level benchmark circuits. These
circuits have BDDs with at least 50 nodes. The column labeled BDD shows the result of converting these
circuits to BDD, while sub-columns show the number of BDD nodes and time of conversion. TED and
Attributed TED columns show the same parameters for TED and Attributed TED diagrams. All diagrams
are built based on the same variable orderings.

The number of nodes in the Attributed TED is always less than that of the original TED. TED is better
than Attributed TED in terms of time of conversion. This is due to the complexity of handling the edge’s
attribute in the Attributed TED.

It can be seen that the advantages of Attributed TED algorithms and structure are more significant
when the difference between the number of original TED nodes and BDD nodes is considerable. This is
partly due to the fact that Attributed TED has more options to improve its representation than TED. In the
Attributed TED, we try to optimize an original TED and make it a near-optimum diagram. BDD is the
best diagram for logic representation. It is clear that when an original TED is similar to BDD, we are short
of space for optimization.

Improving logic-level representation of Taylor…

December 2006 Iranian Journal of Science & Technology, Volume 30, Number B6

745

The circuits selected for experiments are the real world arithmetic units. Table 1 shows that on
average, we have a 9% improvement when using Attributed TED as compared with TED. However,
Attributed TED has about 7% more nodes than BDD.

Table 1. TED, Attributed TED, and BDD construction results for various circuits

Original TED Attributed TED BDD Circuits Inputs Outputs Nets Gates Time Nodes Time Nodes Time Nodes
Hamming (8 bit) 8 7 94 96 0.3 1851 0.5 1765 0.0 1570
Address decoder 21 4 23 27 0.0 150 0.0 111 0.0 108
Parity Gen.(15 bit) 15 2 45 47 0.0 423 0.1 415 0.0 401
Parity Gen(11 bit) 11 2 33 35 0.0 391 0.0 367 0.0 364
Parity Gen(27 bit) 27 2 86 91 0.1 656 0.3 623 0.0 603
Parity Gen(36 bit) 36 2 99 102 0.6 823 0.9 802 0.1 796
Array Divider(8 bit) 16 16 476 485 0.0 375 0.0 261 0.0 170
Array divider
multiplier(8 bit) 17 16 1399 1412 1.1 71464 1.8 34902 0.8 10234

Comparator(16 bit) 32 1 78 79 8.0 197921 9.8 197921 1.7 197889
Comparator(8 bit) 16 1 38 39 0.0 963 0.0 955 0.0 955
Simple adder(16 bit) 16 8 123 142 10.0 213543 11.1 203567 7.8 199344
CLA(8 bit) 17 9 86 95 16.3 12895 23.3 12885 0.1 11466
CLA(4 bit) 9 5 42 47 0.1 693 0.1 687 0.0 612
FADDER(8 bit) 17 8 84 92 15.2 10358 21.8 10348 0.1 9437
FAdder (4 bit) 9 4 40 44 0.0 548 0.0 542 0.0 495
FAdder(16 bit) 33 16 4166 186 4.1 22345 7.2 22213 3.4 18324
CSA(8 bit) 25 16 80 96 0.0 408 0.0 384 0.0 352
CSA(16 bit) 49 32 160 192 0.1 808 0.2 768 0.0 704
CPA(6 bit) 13 9 54 62 0.0 473 0.0 465 0.0 445
CPA(8 bit) 17 11 78 93 0.0 567 0.0 544 0.0 532
Mux(2 * 4) 12 4 18 22 0.0 85 0.0 77 0.0 64

Total 55.9 537740 77.1 490602 14 454865
Average 2.661905 25606.667 3.671429 23362 0.666667 21660.24

Figure 13 shows a chart for the number of nodes in three structures. As shown, charts corresponding

to Attributed TED nodes and BDD nodes are close, but for TED, it is significantly different.
The time spent for circuit conversion of different structures is shown in the chart of Fig. 14. More

time is spent for the conversion of Attributed TED when compared with TED and BDD. This is because
of the high complexity of algorithms in this structure.

Different Diagrams

0

50000

100000

150000

200000

250000

1 4 7 10 13 16 19 22

Circuit No.

Nu
m

be
r

of
 N

od
es

Original TED
BDD
Improved TED

Conversion Time

0

5

10

15

20

25

1 4 7 10 13 16 19 22

Circuit No.

Ti
m

e

BDD
Improved TED
Original TED

 Fig. 13. Number of nodes in different structures Fig. 14. Time of conversion in different structures
For implementing attributed edges in Attributed TED, we have used bit-fields in the C++. A structure

like that of the Fig. 15 pseudo-code is used.
By using this technique, one bit out of 32 bit of a long int has been used for the attribute and the rest

are used for the weight. In this way, the Attributed TED has exactly one bit overhead per each edge. For a
diagram with 100,000 edges, this overhead is 12.5 k, which is not very significant.

P. Lotfi-Kamran / Z. Navabi

Iranian Journal of Science & Technology, Volume 30, Number B6 December 2006

746

struct Edge is
{

signed long int weight : 31;
unsigned long int attrib : 1;

}
Fig. 15. Pseudo code of edge in Attributed TED

In the last series of experiments, we compared the capabilities of BMD, TED and Attributed TED for

representing RT-level benchmarks. Table 2 provides a summary of the results obtained for these
benchmark circuits. Of the ten benchmarks, Paulin is a differential equation solver, described in detail in
[17]. Chain_mult is based on the circuit given in [18]. The SimpleCPU is a processor and described in
[19]. The SimpleRTL is described in [20]. The 5th Order Elliptical filter is described in detail in [21]. The
Avenhause filer is described in [22]. All other benchmarks are described in [23]. All diagrams are built
based on the same variable orderings.

Attributed TED is better than TED in terms of the number of nodes. However, its conversion time is
almost the same as TED’s. This is due to the fact that logic-level representation of Attributed TED is better
than TED’s. In addition, because of the smaller number of nodes, the time of conversion of TED’s and
Attributed TED’s are almost the same (smaller number of nodes compensate the higher complexity of
algorithms of Attributed TED). Also, Attributed TED and TED are better than BMD in terms of the
number of nodes and time of conversion. Table 2 proves that Attributed TED is a good candidate for
representing designs at the RT-level.

Table 2. Comparison among BMD, TED, and Attributed TED
through several RT-level benchmarks

BMD TED Attributed TED Benchmark

Nodes Time Nodes Time Nodes Time
SimpleCPU 687 31 407 15 381 15
Chain_mult 282 15 114 15 98 16
Paulin 1017 62 380 31 367 32
SimpleRTL 334 16 159 2 150 3
Avenhaus Filter 1093 46 372 15 351 17
3rd Order IIR 1129 62 380 15 362 15
4 Point DCT 1332 62 406 16 391 16
5th Order Elliptical Filter 4718 313 2240 141 2103 145
6 Tap Wavelet Filter 4363 219 1171 62 1023 64
6th Order FIR 3737 219 727 31 635 32

9. CONCLUSION

In this paper, Attributed TED has been proposed. An attribute has been added to each edge of our new
Attributed TED. When an edge needs to point to a complemented part, it simply points to a non-
complemented one and sets its attribute to show this. This way, only non-complemented functions and
sub-functions should be constructed directly.

For representing other parts, we use non-complemented functions and simply set the attribute of the
edges pointing to them. Although using attributed edges is not by itself a novel idea [24, 25], this paper is
the first article that uses them to improve the logic representation of TED. Experimental results on various
benchmark circuits showed reasonable effectiveness of our method for improving the logic representation
of TED. On the other hand, the arithmetic representation of Attributed TED is still good, i.e., the added
attributes do not have any negative effects on the arithmetic representation. Therefore, Attributed TED is

Improving logic-level representation of Taylor…

December 2006 Iranian Journal of Science & Technology, Volume 30, Number B6

747

a better solution for representing designs containing both gate-level (Boolean expressions) and vector-
level (arithmetic equations) parts than TED.

REFERENCES

1. Kalla, P., Ciesielski, M., Boutillon, E. & Martin, E. (2002). High-level design verification using Taylor

Expansion Diagrams: first results. High-Level Design Validation and Test Workshop, 13-17.
2. Ciesielski, M., Kalla, P., Zeng, Z. & Rouzeyre, B. (2001). Taylor expansion diagrams: a new representation for

RTL verification. High-Level Design Validation and Test Workshop, Pages 70-75.
3. Ciesielski, M. J., Kalla, P., Zeng, Z. & Rouzeyre, B. (2002). Taylor expansion diagrams: a compact, canonical

representation with applications to symbolic verification. Design, Automation and Test in Europe, 285-289.
4. Bryant, R. E. (1986). Graph-based algorithms for Boolean function manipulation. IEEE Transactions on

Computers, 35, 677-691.
5. Bryant, R. E. (1992). Symbolic Boolean manipulation with ordered binary decision diagrams. ACM Computing

Surveys, 24, 293-318.
6. Becker, B., Drechsler, R. & Werchner, R. (1995). On the relation between BDD’s and FDD’s. Information

Computing, 123, 185-197.
7. Rudell, R. (1993). Dynamic variable ordering for ordered binary decision diagrams. International Conference on

CAD, 42-47.
8. Drechsler, R., Theobald, M. & Becker, B. (1994). Fast OFDD based minimization of fixed polarity Reed-Muller

expressions. European Design Automation Conference, 2-7.
9. Kebschull, U., Schubert, E. & Rosenstiel, W. (1992). Multilevel logic synthesis based on functional decision

diagrams. European Design Automation Conference, 43-47.
10. Drechsler, R. & Becker, B. (1997). Sympathy: Fast exact minimization of fixed polarity Reed-Muller expressions

for symmetric functions. IEEE Transactions on CAD, 16, 1-5.
11. Clarke, E. M., McMillan, K. L., Zhao, X., Fujita, M. & Yang, J. (1993). Spectral Transforms for Large Boolean

Functions with Applications to Technology Mapping. Design Automation Conference, 54-60.
12. Bahar, R. I., Frohm, E. A., Gaona, C. M., Hachtel, G. D., Macii, E., Pardo, A. & Somenzi, F. (1993). Algebraic

decision diagrams and their applications. International Conference on CAD, 188-191.
13. Lai, Y. T., Pedram, M. & Vrudhula, S. B. K. (1996). Formal verification using edge-valued binary decision

diagrams. IEEE Transactions on Computers, 45, 247-255.
14. Bryant, R. E. & Chen, Y. A. (1995). Verification of arithmetic circuits with binary moment diagrams. Design

Automation Conference, 535-541.
15. Clarke, E. M., Fujita, M. & Zhao, X. (1995). Hybrid decision diagrams-overcoming the limitation of MTBDDs

and BMDs. International Conference on CAD, 159-163.
16. Drechsler, R., Becker, B. & Ruppertz, S. (1997). The K*BMD: A verification data structure. IEEE Design & Test

of Computers, 14, 51-59.
17. Ghosh, I., Raghunathan, A. & Jha, N. K. (1998). A design-for-testability technique for register-transfer level

circuits using control/data flow extraction. IEEE Transactions on CAD, 17, 706-723.
18. Ravi, S., Ghosh, I., Roy, R. K. & Dey, S. (1998). Controller resynthesis for testability enhancement of RTL

controller/data path circuits. International Conference on VLSI Design, 193-198.
19. Lotfi-Kamran, P., Hosseinabady, M., Shojaei, H., Massoumi, M. & Navabi, Z. (2005). TED+: A data structure

for microprocessor verification. Asia and South Pacific Design Automation Conference, 567-572.
20. Ravi, S., Lakshminarayana, G. & Jha, N. K. (2001). TAO: regular expression-based register-transfer level

testability analysis and optimization. IEEE Transactions on VLSI, 9, 824-832.
21. Potkonjak, M., Dey, S. & Wong, J. L. [Online]. Optimizing designs using the addition of deflection operations,

Available: http://trix.cs.ucla.edu/jenni/papers/HotPot_TR.pdf.

P. Lotfi-Kamran / Z. Navabi

Iranian Journal of Science & Technology, Volume 30, Number B6 December 2006

748

22. Hong, I. & Potkonjak, M. (1998). Techniques for functional test pattern execution. Asia and South Pacific Design
Automation Conference, 283-288.

23. Kin, H. B. (1999). High-level synthesis and implementation of built-In self-testable data path intensive circuit.
Ph.D. dissertation, Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State
University, Blacksburg, Virginia.

24. Minato, S., Ishiura, N. & Yajima, S. (1990). Shared binary decision diagram with attributed edges for efficient
Boolean function manipulation. Design Automation Conference, 52-57.

25. Brace, K. S., Rudell, R. L. & Bryant, R. E. (1990). Efficient implementation of a BDD package. Design
Automation Conference, 40-45.

