Lecture one:

The Method of Coalgebra – in some detail –

Jan Rutten

CWI Amsterdam & Radboud University Nijmegen

IPM, Tehran - 13 January 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Acknowledgements

My esteemed co-authors

- Marcello Bonsangue (Leiden, CWI)
- Helle Hansen (Delft)
- Alexandra Silva (City College London)
- Milad Niqui
- Clemens Kupke (Glasgow)
- Prakash Panangaden (McGill, Montreal)
- Filippo Bonchi (ENS, Lyon)
- Joost Winter (Warsaw), Jurriaan Rot (ENS, Lyon)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- and many others.

Samson Abramsky (Oxford) Damien Pous (ENS, Lyon)

Acknowledgements

My esteemed co-authors

- Marcello Bonsangue (Leiden, CWI)
- Helle Hansen (Delft)
- Alexandra Silva (City College London)
- Milad Niqui
- Clemens Kupke (Glasgow)
- Prakash Panangaden (McGill, Montreal)
- Filippo Bonchi (ENS, Lyon)
- Joost Winter (Warsaw), Jurriaan Rot (ENS, Lyon)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- and many others.

Samson Abramsky (Oxford) Damien Pous (ENS, Lyon)

Overview of todays lectures

Lecture one: The method of coalgebra

Lecture two: A coinductive calculus of streams

Lecture three: Automata and the algebra-coalgebra duality

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Lecture four: Coalgebraic up-to techniques

Overview of Lecture one

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 1. Category theory (where coalgebra comes from)
- 2. Duality (where coalgebra comes from)
- 3. How coalgebra works (the method in slogans)
- 4. Duality: induction and coinduction
- 5. What coalgebra studies (its subject)
- 6. Discussion

 Category theory (where coalgebra comes from)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Why categories?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

From Samson Abramsky's tutorial:

Categories, why and how?

(Dagstuhl, January 2015)

Why categories?

For **logicians**: gives a syntax-independent view of the fundamental structures of logic, opens up new kinds of models and interpretations.

For **philosophers**: a fresh approach to structuralist foundations of mathematics and science; an alternative to the traditional focus on set theory.

For **computer scientists**: gives a precise handle on abstraction, representation-independence, genericity and more. Gives the fundamental mathematical structures underpinning programming concepts.

Why categories?

For **mathematicians**: organizes your previous mathematical experience in a new and powerful way, reveals new connections and structure, allows you to "think bigger thoughts".

For **physicists**: new ways of formulating physical theories in a structural form. Recent applications to Quantum Information and Computation.

(ロ) (同) (三) (三) (三) (○) (○)

For **economists and game theorists**: new tools, bringing complex phenomena into the scope of formalisation.

- 1. Always ask: what are the types?
- 2. Think in terms of **arrows** rather than **elements**.
- 3. Ask what mathematical structures do, not what they are.
- 4. Categories as mathematical **contexts**.
- 5. Categories as mathematical structures.
- 6. Make definitions and constructions as general as possible.

- 7. Functoriality!
- 8. Naturality!
- 9. Universality!
- 10. Adjoints are everywhere.

- 1. Always ask: what are the types?
- 2. Think in terms of **arrows** rather than **elements**.
- 3. Ask what mathematical structures do, not what they are.
- 4. Categories as mathematical **contexts**.
- 5. Categories as mathematical structures.
- 6. Make definitions and constructions as general as possible.

- 7. Functoriality!
- 8. Naturality!
- 9. Universality!
- 10. Adjoints are everywhere.

- 1. Always ask: what are the types?
- 2. Think in terms of **arrows** rather than **elements**.
- 3. Ask what mathematical structures do, not what they are.
- 4. Categories as mathematical **contexts**.
- 5. Categories as mathematical **structures**.
- 6. Make definitions and constructions as general as possible.

- 7. Functoriality!
- 8. Naturality!
- 9. Universality!
- 10. Adjoints are everywhere.

- 1. Always ask: what are the types?
- 2. Think in terms of **arrows** rather than **elements**.
- 3. Ask what mathematical structures do, not what they are.
- 4. Categories as mathematical contexts.
- 5. Categories as mathematical **structures**.
- 6. Make definitions and constructions as general as possible.

- 7. Functoriality!
- 8. Naturality!
- 9. Universality!
- 10. Adjoints are everywhere.

- 1. Always ask: what are the types?
- 2. Think in terms of **arrows** rather than **elements**.
- 3. Ask what mathematical structures do, not what they are.
- 4. Categories as mathematical contexts.
- 5. Categories as mathematical structures.
- 6. Make definitions and constructions as general as possible.

- 7. Functoriality!
- 8. Naturality!
- 9. Universality!
- 10. Adjoints are everywhere.

- 1. Always ask: what are the types?
- 2. Think in terms of **arrows** rather than **elements**.
- 3. Ask what mathematical structures do, not what they are.
- 4. Categories as mathematical contexts.
- 5. Categories as mathematical structures.
- 6. Make definitions and constructions as general as possible.

- 7. Functoriality!
- 8. Naturality!
- 9. Universality!
- 10. Adjoints are everywhere.

- 1. Always ask: what are the types?
- 2. Think in terms of **arrows** rather than **elements**.
- 3. Ask what mathematical structures do, not what they are.
- 4. Categories as mathematical contexts.
- 5. Categories as mathematical structures.
- 6. Make definitions and constructions as general as possible.

(ロ) (同) (三) (三) (三) (○) (○)

7. Functoriality!

- 8. Naturality!
- 9. Universality!
- 10. Adjoints are everywhere.

- 1. Always ask: what are the types?
- 2. Think in terms of **arrows** rather than **elements**.
- 3. Ask what mathematical structures do, not what they are.
- 4. Categories as mathematical contexts.
- 5. Categories as mathematical structures.
- 6. Make definitions and constructions as general as possible.

(ロ) (同) (三) (三) (三) (○) (○)

7. Functoriality!

8. Naturality!

9. Universality!

10. Adjoints are everywhere.

- 1. Always ask: what are the types?
- 2. Think in terms of **arrows** rather than **elements**.
- 3. Ask what mathematical structures do, not what they are.
- 4. Categories as mathematical contexts.
- 5. Categories as mathematical structures.
- 6. Make definitions and constructions as general as possible.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

7. Functoriality!

- 8. Naturality!
- 9. Universality!

10. Adjoints are everywhere.

- 1. Always ask: what are the types?
- 2. Think in terms of **arrows** rather than **elements**.
- 3. Ask what mathematical structures do, not what they are.
- 4. Categories as mathematical contexts.
- 5. Categories as mathematical structures.
- 6. Make definitions and constructions as general as possible.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

7. Functoriality!

- 8. Naturality!
- 9. Universality!
- 10. Adjoints are everywhere.

A category C consists of

- **Objects** *A*, *B*, *C*, ...
- Morphisms/arrows: for each pair of objects A, B, a set of morphisms C(A, B) with domain A and codomain B
- **Composition** of morphisms: $g \circ f$:

- Axioms:

 $h \circ (g \circ f) = (h \circ g) \circ f$ $f \circ id = f = id \circ f$

A category C consists of

- Objects *A*, *B*, *C*, ...
- Morphisms/arrows: for each pair of objects A, B, a set of morphisms C(A, B) with domain A and codomain B
- **Composition** of morphisms: $g \circ f$:

- Axioms:

 $h \circ (g \circ f) = (h \circ g) \circ f$ $f \circ id = f = id \circ f$

A category C consists of

- Objects *A*, *B*, *C*, ...
- Morphisms/arrows: for each pair of objects A, B, a set of morphisms C(A, B) with domain A and codomain B
- **Composition** of morphisms: $g \circ f$:

- Axioms:

 $h \circ (g \circ f) = (h \circ g) \circ f$ $f \circ id = f = id \circ f$

A category C consists of

- Objects *A*, *B*, *C*, ...
- Morphisms/arrows: for each pair of objects A, B, a set of morphisms C(A, B) with domain A and codomain B
- **Composition** of morphisms: $g \circ f$:

- Axioms:

 $h \circ (g \circ f) = (h \circ g) \circ f$ $f \circ id = f = id \circ f$

A category C consists of

- Objects *A*, *B*, *C*, ...
- Morphisms/arrows: for each pair of objects A, B, a set of morphisms C(A, B) with domain A and codomain B
- **Composition** of morphisms: $g \circ f$:

- Axioms:

$$h \circ (g \circ f) = (h \circ g) \circ f$$
 $f \circ id = f = id \circ f$

• Any kind of mathematical structure, together with structure preserving functions, forms a category. E.g.

- sets and functions
- groups and group homomorphisms
- monoids and monoid homomorphisms
- vector spaces over a field k, and linear maps
- topological spaces and continuous functions
- partially ordered sets and monotone functions
- Monoids are one-object categories
- algebras, and algebra homomorphisms
- coalgebras, and coalgebra homomorphisms

• Any kind of mathematical structure, together with structure preserving functions, forms a category. E.g.

- sets and functions
- groups and group homomorphisms
- monoids and monoid homomorphisms
- vector spaces over a field k, and linear maps
- topological spaces and continuous functions
- partially ordered sets and monotone functions
- Monoids are one-object categories
- algebras, and algebra homomorphisms
- coalgebras, and coalgebra homomorphisms

• Any kind of mathematical structure, together with structure preserving functions, forms a category. E.g.

- sets and functions
- groups and group homomorphisms
- monoids and monoid homomorphisms
- vector spaces over a field k, and linear maps
- topological spaces and continuous functions
- partially ordered sets and monotone functions
- Monoids are one-object categories
- algebras, and algebra homomorphisms
- coalgebras, and coalgebra homomorphisms

• Any kind of mathematical structure, together with structure preserving functions, forms a category. E.g.

- sets and functions
- groups and group homomorphisms
- monoids and monoid homomorphisms
- vector spaces over a field *k*, and linear maps
- topological spaces and continuous functions
- partially ordered sets and monotone functions
- Monoids are one-object categories
- algebras, and algebra homomorphisms
- coalgebras, and coalgebra homomorphisms

• Any kind of mathematical structure, together with structure preserving functions, forms a category. E.g.

- sets and functions
- groups and group homomorphisms
- monoids and monoid homomorphisms
- vector spaces over a field *k*, and linear maps
- topological spaces and continuous functions
- partially ordered sets and monotone functions
- Monoids are one-object categories
- algebras, and algebra homomorphisms
- coalgebras, and coalgebra homomorphisms

• Any kind of mathematical structure, together with structure preserving functions, forms a category. E.g.

- sets and functions
- groups and group homomorphisms
- monoids and monoid homomorphisms
- vector spaces over a field *k*, and linear maps
- topological spaces and continuous functions
- partially ordered sets and monotone functions
- Monoids are one-object categories
- algebras, and algebra homomorphisms
- coalgebras, and coalgebra homomorphisms

• Any kind of mathematical structure, together with structure preserving functions, forms a category. E.g.

- sets and functions
- groups and group homomorphisms
- monoids and monoid homomorphisms
- vector spaces over a field *k*, and linear maps
- topological spaces and continuous functions
- partially ordered sets and monotone functions
- Monoids are one-object categories
- algebras, and algebra homomorphisms
- coalgebras, and coalgebra homomorphisms

• Any kind of mathematical structure, together with structure preserving functions, forms a category. E.g.

- sets and functions
- groups and group homomorphisms
- monoids and monoid homomorphisms
- vector spaces over a field *k*, and linear maps
- topological spaces and continuous functions
- partially ordered sets and monotone functions
- Monoids are one-object categories
- algebras, and algebra homomorphisms
- coalgebras, and coalgebra homomorphisms

• Any kind of mathematical structure, together with structure preserving functions, forms a category. E.g.

- sets and functions
- groups and group homomorphisms
- monoids and monoid homomorphisms
- vector spaces over a field *k*, and linear maps
- topological spaces and continuous functions
- partially ordered sets and monotone functions
- Monoids are one-object categories
- algebras, and algebra homomorphisms
- coalgebras, and coalgebra homomorphisms

• Any kind of mathematical structure, together with structure preserving functions, forms a category. E.g.

- sets and functions
- groups and group homomorphisms
- monoids and monoid homomorphisms
- vector spaces over a field *k*, and linear maps
- topological spaces and continuous functions
- partially ordered sets and monotone functions
- Monoids are one-object categories
- algebras, and algebra homomorphisms
- coalgebras, and coalgebra homomorphisms

Arrows rather than elements

A function $f: X \rightarrow Y$ (between sets) is:

- injective if

 $\forall x, y \in X, \ f(x) = f(y) \Rightarrow x = y$

- surjective if

 $\forall y \in Y, \exists x \in X, f(x) = y$

- monic if

$$\forall g, h, \ f \circ g = f \circ h \Rightarrow g = h$$

- epic if

$$\forall g, h, g \circ f = h \circ f \Rightarrow g = h$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proposition

- *m* is injective iff *m* is monic.
- *e* is surjective iff *e* is epic.

Arrows rather than elements

A function $f: X \rightarrow Y$ (between sets) is:

- injective if

 $\forall x, y \in X, f(x) = f(y) \Rightarrow x = y$

- surjective if

 $\forall y \in Y, \exists x \in X, f(x) = y$

- monic if

$$\forall g, h, \ f \circ g = f \circ h \Rightarrow g = h$$

- epic if

$$\forall g, h, g \circ f = h \circ f \Rightarrow g = h$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proposition

- *m* is injective iff *m* is monic.
- *e* is surjective iff *e* is epic.

A function $f: X \rightarrow Y$ (between sets) is:

- injective if

 $\forall x, y \in X, f(x) = f(y) \Rightarrow x = y$

- surjective if

 $\forall y \in Y, \exists x \in X, f(x) = y$

- monic if

 $\forall g, h, \ f \circ g = f \circ h \Rightarrow g = h$

- epic if

$$\forall g, h, g \circ f = h \circ f \Rightarrow g = h$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- *m* is injective iff *m* is monic.
- *e* is surjective iff *e* is epic.

A function $f: X \rightarrow Y$ (between sets) is:

- injective if

 $\forall x, y \in X, f(x) = f(y) \Rightarrow x = y$

- surjective if

 $\forall y \in Y, \exists x \in X, f(x) = y$

- monic if

$$\forall g, h, \ f \circ g = f \circ h \Rightarrow g = h$$

- epic if

$$\forall g, h, \ g \circ f = h \circ f \Rightarrow g = h$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- *m* is injective iff *m* is monic.
- *e* is surjective iff *e* is epic.

A function $f: X \rightarrow Y$ (between sets) is:

- injective if

 $\forall x, y \in X, f(x) = f(y) \Rightarrow x = y$

- surjective if

 $\forall y \in Y, \exists x \in X, f(x) = y$

- monic if

$$\forall g, h, \ f \circ g = f \circ h \Rightarrow g = h$$

- epic if

$$\forall g, h, \ g \circ f = h \circ f \Rightarrow g = h$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- *m* is injective iff *m* is monic.
- *e* is surjective iff *e* is epic.

A function $f: X \rightarrow Y$ (between sets) is:

- injective if

 $\forall x, y \in X, f(x) = f(y) \Rightarrow x = y$

- surjective if

 $\forall y \in Y, \exists x \in X, f(x) = y$

- monic if

$$\forall g, h, \ f \circ g = f \circ h \Rightarrow g = h$$

- epic if

$$\forall g, h, \ g \circ f = h \circ f \Rightarrow g = h$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- *m* is injective iff *m* is monic.
- *e* is surjective iff *e* is epic.

A function $f: X \rightarrow Y$ (between sets) is:

- injective if

 $\forall x, y \in X, f(x) = f(y) \Rightarrow x = y$

- surjective if

 $\forall y \in Y, \exists x \in X, f(x) = y$

- monic if

$$\forall g, h, \ f \circ g = f \circ h \Rightarrow g = h$$

- epic if

$$\forall g, h, \ g \circ f = h \circ f \Rightarrow g = h$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- *m* is injective iff *m* is monic.
- *e* is surjective iff *e* is epic.

A function $f: X \rightarrow Y$ (between sets) is:

- injective if

 $\forall x, y \in X, f(x) = f(y) \Rightarrow x = y$

- surjective if

 $\forall y \in Y, \exists x \in X, f(x) = y$

- monic if

$$\forall g, h, \ f \circ g = f \circ h \Rightarrow g = h$$

- epic if

$$\forall g, h, \ g \circ f = h \circ f \Rightarrow g = h$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- *m* is injective iff *m* is monic.
- e is surjective iff e is epic.

Defining the Cartesian product

- with elements:

 $A \times B = \{ \langle a, b \rangle \mid a \in A, b \in B \}$

where

 $\langle a,b\rangle = \{\{a,b\},b\}$

- with arrows (expressing a universal property):

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Defining the Cartesian product

- with elements:

 $A \times B = \{ \langle a, b \rangle \mid a \in A, b \in B \}$

where

$$\langle a,b \rangle = \{\{a,b\}, b\}$$

- with arrows (expressing a universal property):

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Defining the Cartesian product

- with elements:

 $A \times B = \{ \langle a, b \rangle \mid a \in A, b \in B \}$

where

$$\langle \boldsymbol{a}, \boldsymbol{b} \rangle = \{\{\boldsymbol{a}, \boldsymbol{b}\}, \, \boldsymbol{b}\}$$

- with arrows (expressing a universal property):

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

2. Duality (where coalgebra comes from)

An additional slogan for categories: duality is omnipresent

(日) (日) (日) (日) (日) (日) (日)

- epi mono
- product sum
- initial object final object
- algebra coalgebra

2. Duality (where coalgebra comes from)

An additional slogan for categories: duality is omnipresent

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- epi mono
- product sum
- initial object final object
- algebra coalgebra

- f is monic:

 $\forall g, h, f \circ g = f \circ h \Rightarrow g = h$

- f is epic:

- f is monic:

 $\forall g, h, f \circ g = f \circ h \Rightarrow g = h$

- *f* is **epic**:

 $\forall g, h, g \circ f = h \circ f \Rightarrow g = h$

- f is monic:

 $\forall g, h, \ f \circ g = f \circ h \Rightarrow g = h$

- *f* is **epic**:

$$\forall g, h, g \circ f = h \circ f \Rightarrow g = h$$

- f is monic:

 $\forall g, h, f \circ g = f \circ h \Rightarrow g = h$

- *f* is **epic**:

$$\forall g, h, \ g \circ f = h \circ f \Rightarrow g = h$$

The **product** of *A* and *B*:

The **coproduct** of *A* and *B*:

Proposition: *O* is product in C iff *O* is coproduct in C^{op} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

The **product** of *A* and *B*:

The **coproduct** of *A* and *B*:

Proposition: *O* is product in C iff *O* is coproduct in C^{op} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

The **product** of *A* and *B*:

The **coproduct** of *A* and *B*:

Proposition: *O* is product in C iff *O* is coproduct in C^{op} .

(日) (日) (日) (日) (日) (日) (日)

The **product** of *A* and *B*:

The **coproduct** of *A* and *B*:

Proposition: *O* is product in C iff *O* is coproduct in C^{op} .

(ロ) (同) (三) (三) (三) (○) (○)

An object A in a category C is \ldots

- initial if for any object *B* there exists a unique arrow

$A - - - \stackrel{!}{-} - \rightarrow B$

- final if for any object B there exists a unique arrow

 $B - - - \stackrel{!}{-} - \rightarrow A$

Proposition: A is initial in C iff A is final in C^{op} . **Proposition:** Initial and final objects are unique up-to isomorphism.

An object A in a category C is \ldots

- initial if for any object *B* there exists a unique arrow

$A - - -^! - - \rightarrow B$

- final if for any object B there exists a unique arrow

 $B - - - \stackrel{!}{-} - \rightarrow A$

Proposition: A is initial in C iff A is final in C^{op} . **Proposition:** Initial and final objects are unique up-to isomorphism.

An object A in a category C is \ldots

- initial if for any object B there exists a unique arrow

 $A - - - \stackrel{!}{-} - \rightarrow B$

- final if for any object B there exists a unique arrow

 $B - - - \stackrel{!}{-} - \rightarrow A$

Proposition: A is initial in C iff A is final in C^{op} . **Proposition:** Initial and final objects are unique up-to isomorphism.

An object A in a category C is \ldots

- initial if for any object B there exists a unique arrow

$A - - - \stackrel{!}{-} - \rightarrow B$

- final if for any object B there exists a unique arrow

 $B - - - \stackrel{!}{-} - \rightarrow A$

Proposition: A is initial in C iff A is final in C^{op} .

Proposition: Initial and final objects are unique up-to isomorphism.

An object A in a category C is \ldots

- initial if for any object *B* there exists a unique arrow

 $A - - - \stackrel{!}{-} - \rightarrow B$

- final if for any object B there exists a unique arrow

 $B - - - \stackrel{!}{-} - \rightarrow A$

Proposition: *A* is initial in C iff *A* is final in C^{op} .

Proposition: Initial and final objects are unique up-to isomorphism.

An object A in a category C is \ldots

- initial if for any object B there exists a unique arrow

 $A - - - \stackrel{!}{-} - \rightarrow B$

- final if for any object B there exists a unique arrow

 $B - - - \stackrel{!}{-} - \rightarrow A$

Proposition: *A* is initial in C iff *A* is final in C^{op} .

Proposition: Initial and final objects are unique up-to isomorphism.

Where coalgebra comes from

By duality. From algebra!

Classically, algebras are sets with operations.

Ex. (\mathbb{N} , 0, succ), with $0 \in \mathbb{N}$ and succ : $\mathbb{N} \to \mathbb{N}$.

Equivalently,

$$[zero, succ] \downarrow_{\mathbb{N}}$$

(日) (日) (日) (日) (日) (日) (日)

where $1 = \{*\}$ and zero(*) = 0.

Where coalgebra comes from

By duality. From algebra!

Classically, algebras are sets with operations.

Ex. (\mathbb{N} , 0, succ), with $0 \in \mathbb{N}$ and succ : $\mathbb{N} \to \mathbb{N}$.

Equivalently,

$$[zero, succ] \downarrow$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where $1 = \{*\}$ and zero(*) = 0.

Where coalgebra comes from

By duality. From algebra!

Classically, algebras are sets with operations.

Ex. (\mathbb{N} , 0, succ), with $0 \in \mathbb{N}$ and succ : $\mathbb{N} \to \mathbb{N}$.

Equivalently,

 $\begin{matrix} \mathbf{1} + \mathbb{N} \\ [\text{zero}, \text{succ}] \\ \downarrow \\ \mathbb{N} \end{matrix}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where $1 = \{*\}$ and zero(*) = 0.

Algebra

Classically, algebras are sets with operations.

Ex.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

with $\alpha(P_1, P_2) = P_1; P_2$.

Algebra, categorically

 $\begin{array}{c} \mathsf{F}(\mathsf{X}) \\ \alpha \\ \downarrow \\ \mathsf{X} \end{array}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where F is the type of the algebra.

Coalgebra, dually

 $\begin{array}{c} X \\ \alpha \\ \downarrow \\ F(X) \end{array}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where *F* is the type of the coalgebra.

Example: streams

Streams are our favourite example of a coalgebra:

 $\bigvee_{\substack{ \wedge \mathsf{head}, \mathsf{tail} \\ \mathbb{N} \times \mathbb{N}^{\omega} } }^{\mathbb{N}^{\omega}}$

where

$$\begin{aligned} &\text{head}(\sigma) &= \sigma(\mathbf{0}) \\ &\text{tail}(\sigma) &= (\sigma(\mathbf{1}), \sigma(\mathbf{2}), \sigma(\mathbf{3}), \ldots) \end{aligned}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

for any stream $\sigma = (\sigma(0), \sigma(1), \sigma(2), \ldots) \in \mathbb{N}^{\omega}$.

3. How coalgebra works (its method in slogans)

- be precise about types
- ask what a system does rather than what it is
- functoriality
- interaction through homomorphisms
- aim for universality

Note that all these slogans are part of the categorical approach.

(日) (日) (日) (日) (日) (日) (日)

3. How coalgebra works (its method in slogans)

- be precise about types
- ask what a system does rather than what it is
- functoriality
- interaction through homomorphisms
- aim for universality

Note that all these slogans are part of the categorical approach.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Starting point: the system's type

A coalgebra of type F is a pair (X, α) with

 $\alpha: X \to F(X)$

For instance, non-deterministic transition systems:

Formally, the type *F* of a coalgebra/system is a functor.

The importance of knowing the system's type

The type *F* of a coalgebra/system

 $\alpha: X \to F(X)$

determines

- a canonical notion of system equivalence: bisimulation
- a canonical notion of minimization
- a canonical interpretation: final coalgebra semantics

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- (a canonical logic)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Doing > Being

Behaviour > Construction

Systems as black boxes (with internal states)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Doing > Being

Behaviour > Construction

Systems as black boxes (with internal states)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Doing > Being

Behaviour > Construction

Systems as black boxes (with internal states)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Doing > Being

Behaviour > Construction

Systems as black boxes (with internal states)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Doing > Being

Behaviour > Construction

Systems as black boxes (with internal states)

Example: the shuffle product of streams

Being:

$$(\sigma \otimes \tau)(n) = \sum_{k=0}^{n} {n \choose k} \cdot \sigma(k) \cdot \tau(n-k)$$

Doing:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example: the shuffle product of streams

Being:

$$(\sigma \otimes \tau)(n) = \sum_{k=0}^{n} {n \choose k} \cdot \sigma(k) \cdot \tau(n-k)$$

Doing:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example: the shuffle product of streams

Being:

$$(\sigma \otimes \tau)(n) = \sum_{k=0}^{n} {n \choose k} \cdot \sigma(k) \cdot \tau(n-k)$$

Doing:

$$\sigma \otimes \tau \xrightarrow{\sigma(\mathbf{0}) \cdot \tau(\mathbf{0})} (\sigma' \otimes \tau) + (\sigma \otimes \tau')$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Being:

The increasing stream h of all natural numbers that are divisible by only 2, 3, or 5:

 $h = (1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, \dots)$

h(n) = ?

Doing:

 $h \longrightarrow (2 \cdot h) \parallel (3 \cdot h) \parallel (5 \cdot h)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

Being:

The increasing stream h of all natural numbers that are divisible by only 2, 3, or 5:

 $h = (1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, \dots)$

h(*n*) = ?

Doing:

 $h \longrightarrow (2 \cdot h) \parallel (3 \cdot h) \parallel (5 \cdot h)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Being:

The increasing stream h of all natural numbers that are divisible by only 2, 3, or 5:

 $h = (1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, \dots)$

h(*n*) = ?

Doing:

 $h \longrightarrow (2 \cdot h) \parallel (3 \cdot h) \parallel (5 \cdot h)$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Being:

The increasing stream h of all natural numbers that are divisible by only 2, 3, or 5:

 $h = (1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, \dots)$

h(n) = ?

Doing:

 $h \xrightarrow{1} (2 \cdot h) \parallel (3 \cdot h) \parallel (5 \cdot h)$

(日) (日) (日) (日) (日) (日) (日)

Homomorphisms

... are for systems/coalgebras what **functions** are for sets.

(日) (日) (日) (日) (日) (日) (日)

... are **behaviour preserving** functions.

Functoriality

Note that for the definition of homomorphism, the type F needs to be a **functor**:

F acts on sets: F(X), F(Y) and on functions: F(h)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Example of a homomorphism

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Minimization through (canonical) homomorphism.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Always aim at universal/canonical formulations.

For instance: final coalgebras

- \Rightarrow coinduction (to be discussed shortly)
- \Rightarrow semantics

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Always aim at universal/canonical formulations.

For instance: final coalgebras

- \Rightarrow coinduction (to be discussed shortly)
- \Rightarrow semantics

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Always aim at universal/canonical formulations.

For instance: final coalgebras

- \Rightarrow coinduction (to be discussed shortly)
- \Rightarrow semantics

(日) (日) (日) (日) (日) (日) (日)

Always aim at universal/canonical formulations.

For instance: final coalgebras

- \Rightarrow coinduction (to be discussed shortly)
- \Rightarrow semantics

(日) (日) (日) (日) (日) (日) (日)

Always aim at universal/canonical formulations.

For instance: final coalgebras

In final coalgebras: Being = Doing

 \Rightarrow coinduction (to be discussed shortly)

 \Rightarrow semantics

(日) (日) (日) (日) (日) (日) (日)

Always aim at universal/canonical formulations.

For instance: final coalgebras

- \Rightarrow coinduction (to be discussed shortly)
- \Rightarrow semantics

Semantics by finality: streams

The final homomorphism into the set of streams:

maps any system X to its minimization: e.g.,

(日) (日) (日) (日) (日) (日) (日)

4. Duality: induction and coinduction

- initial algebra final coalgebra
- congruence bisimulation
- induction coinduction
- least fixed point greatest fixed point

(日) (日) (日) (日) (日) (日) (日)

The natural numbers are an example of an initial algebra:

(日) (日) (日) (日) (日) (日) (日)

Note: any **two** homomorphisms from \mathbb{N} to *S* are **equal**.

Note: *id* : $\mathbb{N} \to \mathbb{N}$ is a homomorphism.

Note: [zero, succ] : $1 + \mathbb{N} \cong \mathbb{N}$.

The natural numbers are an example of an initial algebra:

$$[\text{zero, succ}] \downarrow \qquad \forall \beta \\ \mathbb{N} - -\overline{\exists !} \to S$$

(日) (日) (日) (日) (日) (日) (日)

Note: any **two** homomorphisms from \mathbb{N} to *S* are **equal**. Note: *id* : $\mathbb{N} \to \mathbb{N}$ is a homomorphism. Note: [zero, succ] : $1 + \mathbb{N} \cong \mathbb{N}$.

The natural numbers are an example of an initial algebra:

$$[\text{zero}, \text{succ}] \downarrow \qquad \forall \qquad \beta \\ \mathbb{N} - - = - \rightarrow S$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Note: any **two** homomorphisms from \mathbb{N} to *S* are **equal**.

Note: $id : \mathbb{N} \to \mathbb{N}$ is a homomorphism.

Note: [zero, succ] : $1 + \mathbb{N} \cong \mathbb{N}$.

The natural numbers are an example of an initial algebra:

$$[\text{zero}, \text{succ}] \downarrow \qquad \forall \beta \\ \mathbb{N} - -\overline{\exists !} \to S$$

(ロ) (同) (三) (三) (三) (○) (○)

Note: any **two** homomorphisms from \mathbb{N} to *S* are **equal**.

- Note: $id : \mathbb{N} \to \mathbb{N}$ is a homomorphism.
- Note: [zero, succ] : $1 + \mathbb{N} \cong \mathbb{N}$.

Streams are an example of a final coalgebra:

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

(Note: instead of \mathbb{N} , we could have taken **any** set.)

Note: any **two** homomorphisms from *S* to \mathbb{N}^{ω} are **equal**.

Note: $id : \mathbb{N}^{\omega} \to \mathbb{N}^{\omega}$ is a homomorphism.

Streams are an example of a final coalgebra:

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

(Note: instead of \mathbb{N} , we could have taken **any** set.)

Note: any **two** homomorphisms from *S* to \mathbb{N}^{ω} are **equal**.

Note: $id : \mathbb{N}^{\omega} \to \mathbb{N}^{\omega}$ is a homomorphism.

Streams are an example of a final coalgebra:

$$S - - \stackrel{\exists !}{\longrightarrow} \mathbb{N}^{\omega}$$

$$\forall \downarrow \beta \qquad \qquad \downarrow \langle \mathsf{head}, \mathsf{tail} \rangle$$

$$\mathbb{N} \times S - - \rightarrow \mathbb{N} \times \mathbb{N}^{\omega}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

(Note: instead of \mathbb{N} , we could have taken **any** set.)

Note: any **two** homomorphisms from *S* to \mathbb{N}^{ω} are **equal**.

Note: $id : \mathbb{N}^{\omega} \to \mathbb{N}^{\omega}$ is a homomorphism.

Streams are an example of a final coalgebra:

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

(Note: instead of \mathbb{N} , we could have taken **any** set.)

Note: any **two** homomorphisms from *S* to \mathbb{N}^{ω} are **equal**.

Note: $id : \mathbb{N}^{\omega} \to \mathbb{N}^{\omega}$ is a homomorphism.

Induction = definition and proof principle for algebras.

Ex. mathematical induction: for all $P \subseteq \mathbb{N}$,

 $(P(0) \text{ and } (\forall n : P(n) \Rightarrow P(\operatorname{succ}(n)))) \Rightarrow \forall n : P(n)$

(Other examples: transfinite, well-founded, tree, structural, etc.)

(日) (日) (日) (日) (日) (日) (日)

Induction = definition and proof principle for algebras.

Ex. mathematical induction: for all $P \subseteq \mathbb{N}$,

 $(P(0) \text{ and } (\forall n : P(n) \Rightarrow P(\operatorname{succ}(n)))) \Rightarrow \forall n : P(n)$

(Other examples: transfinite, well-founded, tree, structural, etc.)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Induction = definition and proof principle for algebras.

Ex. mathematical induction: for all $P \subseteq \mathbb{N}$,

 $(P(0) \text{ and } (\forall n : P(n) \Rightarrow P(\operatorname{succ}(n)))) \Rightarrow \forall n : P(n)$

(Other examples: transfinite, well-founded, tree, structural, etc.)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Induction = definition and proof principle for algebras.

Ex. mathematical induction: for all $P \subseteq \mathbb{N}$,

 $(P(0) \text{ and } (\forall n : P(n) \Rightarrow P(\operatorname{succ}(n)))) \Rightarrow \forall n : P(n)$

(Other examples: transfinite, well-founded, tree, structural, etc.)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Algebras and congruences (ex. natural numbers)

We call $R \subseteq \mathbb{N} \times \mathbb{N}$ a congruence if

(i) $(0,0) \in R$ and (ii) $(n,m) \in R \Rightarrow (\operatorname{succ}(n),\operatorname{succ}(m)) \in R$

(Note: *R* is **not** required to be an equivalence relation.)

Equivalently, $R \subseteq \mathbb{N} \times \mathbb{N}$ is a **congruence** if

for some function $\gamma : \mathbf{1} + \mathbf{R} \rightarrow \mathbf{R}$.

Algebras and congruences (ex. natural numbers)

We call $R \subseteq \mathbb{N} \times \mathbb{N}$ a congruence if

(i)
$$(0,0) \in R$$
 and
(ii) $(n,m) \in R \Rightarrow (\operatorname{succ}(n),\operatorname{succ}(m)) \in R$

(Note: *R* is **not** required to be an equivalence relation.)

Equivalently, $\mathbf{R} \subseteq \mathbb{N} \times \mathbb{N}$ is a **congruence** if

for some function $\gamma : \mathbf{1} + \mathbf{R} \rightarrow \mathbf{R}$.

Initial algebras and congruences

Theorem: induction proof principle Every congruence $R \subseteq \mathbb{N} \times \mathbb{N}$ contains the **diagonal**:

 $\Delta \subseteq \boldsymbol{R}$

where $\Delta = \{(n, n) \mid n \in \mathbb{N}\}.$

Proof: Because $(\mathbb{N}, [zero, succ])$ is an initial algebra,

we have $\pi_1 \circ ! = id = \pi_2 \circ !$, which implies !(n) = (n, n), all $n \in \mathbb{N}$

・ロト・(四ト・(川下・(日下))

Initial algebras and congruences

Theorem: induction proof principle Every congruence $R \subseteq \mathbb{N} \times \mathbb{N}$ contains the **diagonal**:

 $\Delta \subseteq R$

where $\Delta = \{(n, n) \mid n \in \mathbb{N}\}.$

Proof: Because $(\mathbb{N}, [zero, succ])$ is an initial algebra,

we have $\pi_1 \circ ! = id = \pi_2 \circ !$, which implies !(n) = (n, n), all $n \in \mathbb{N}$.

(日) (日) (日) (日) (日) (日) (日)

Initial algebras and induction

Theorem: The following are equivalent:

1. For every congruence relation $\mathbf{R} \subseteq \mathbb{N} \times \mathbb{N}$,

$\Delta \subseteq \textit{R}$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

2. For every predicate $P \subseteq \mathbb{N}$, (P(0) and ($\forall n : P(n) \Rightarrow P(\operatorname{succ}(n))$)) $\Rightarrow \forall n : P(n)$

Proof: Exercise.

In other words: two equivalent formulations of induction!

Initial algebras and induction

Theorem: The following are equivalent:

1. For every congruence relation $R \subseteq \mathbb{N} \times \mathbb{N}$,

$\Delta \subseteq \textit{R}$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

2. For every predicate $P \subseteq \mathbb{N}$, (P(0) and ($\forall n : P(n) \Rightarrow P(\operatorname{succ}(n))$)) $\Rightarrow \forall n : P(n)$

Proof: Exercise.

In other words: two equivalent formulations of induction!

Initial algebras and induction

Theorem: The following are equivalent:

1. For every congruence relation $\mathbf{R} \subseteq \mathbb{N} \times \mathbb{N}$,

$\Delta \subseteq \mathbf{R}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

2. For every predicate $P \subseteq \mathbb{N}$, (P(0) and ($\forall n : P(n) \Rightarrow P(\operatorname{succ}(n))$)) $\Rightarrow \forall n : P(n)$

Proof: Exercise.

In other words: two equivalent formulations of induction!

Coinduction = definition and proof principle for coalgebras.

Coinduction is **dual** to induction, in a very precise way.

Categorically, coinduction is a property of final coalgebras.

(日) (日) (日) (日) (日) (日) (日)

Coinduction = definition and proof principle for coalgebras.

Coinduction is **dual** to induction, in a very precise way.

Categorically, coinduction is a property of final coalgebras.

(ロ) (同) (三) (三) (三) (○) (○)

Coinduction = definition and proof principle for coalgebras.

Coinduction is **dual** to induction, in a very precise way.

Categorically, coinduction is a property of final coalgebras.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Coinduction = definition and proof principle for coalgebras.

Coinduction is **dual** to induction, in a very precise way.

Categorically, coinduction is a property of final coalgebras.

(ロ) (同) (三) (三) (三) (○) (○)

Coalgebras and bisimulations (ex. streams)

We call $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ a **bisimulation** if, for all $(\sigma, \tau) \in R$,

(*i*) head(
$$\sigma$$
) = head(τ) and
(*ii*) (tail(σ), tail(τ)) $\in R$

Equivalently, $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ is a **bisimulation** if

for some function $\gamma : \mathbf{R} \to \mathbb{N} \times \mathbf{R}$.

Coalgebras and bisimulations (ex. streams)

We call $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ a **bisimulation** if, for all $(\sigma, \tau) \in R$,

(i) head(
$$\sigma$$
) = head(τ) and
(ii) (tail(σ), tail(τ)) $\in R$

Equivalently, $\mathbf{R} \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ is a **bisimulation** if

for some function $\gamma : \mathbf{R} \to \mathbb{N} \times \mathbf{R}$.

Final coalgebras and bisimulations

Theorem: coinduction proof principle Every bisimulation $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ is contained in the diagonal:

 $R \subseteq \Delta$

where $\Delta = \{(\sigma, \sigma) \mid \sigma \in \mathbb{N}^{\omega}\}.$

Proof: Because $(\mathbb{N}^{\omega}, \langle \text{head}, \text{tail} \rangle)$ is a final coalgebra,

we have $\pi_1 = \pi_2$, which implies $\sigma = \tau$, for all $(\sigma, \tau) \in \mathbb{N}^{\omega}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

Final coalgebras and bisimulations

Theorem: coinduction proof principle Every bisimulation $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ is contained in the diagonal:

 $R \subseteq \Delta$

where $\Delta = \{(\sigma, \sigma) \mid \sigma \in \mathbb{N}^{\omega}\}.$

Proof: Because $(\mathbb{N}^{\omega}, \langle \text{head}, \text{tail} \rangle)$ is a final coalgebra,

we have $\pi_1 = \pi_2$, which implies $\sigma = \tau$, for all $(\sigma, \tau) \in \mathbb{N}^{\omega}$.

Final coalgebras and coinduction

The following are equivalent:

1. For every bisimulation relation $\mathbf{R} \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$,

$\pmb{R} \subseteq \pmb{\Delta}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

2. ??

In other words: no obvious equivalent formulation of **coinduction**!

Final coalgebras and coinduction

The following are equivalent:

1. For every bisimulation relation $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$,

$\pmb{R} \subseteq \pmb{\Delta}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

2. ??

In other words: no obvious equivalent formulation of **coinduction**!

Final coalgebras and coinduction

The following are equivalent:

1. For every bisimulation relation $R \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$,

$\pmb{R} \subseteq \pmb{\Delta}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

2. ??

In other words: no obvious equivalent formulation of **coinduction**!

Congruences and bisimulations: dual?

 $R \subseteq \mathbb{N} \times \mathbb{N}$ is a congruence if

 $\pmb{R} \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$ is a **bisimulation** if

Congruences and bisimulations: dual?

 $R \subseteq S \times T$ is an *F*-congruence if

 $R \subseteq S \times T$ is an *F*-bisimulation if

Induction and coinduction: dual?

For every **congruence** relation $\mathbf{R} \subseteq \mathbb{N} \times \mathbb{N}$,

$\Delta \subseteq R$

For every **bisimulation** relation $\mathbf{R} \subseteq \mathbb{N}^{\omega} \times \mathbb{N}^{\omega}$,

 $\pmb{R} \subseteq \Delta$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Induction and coinduction: dual?

For every **congruence** relation *R* on an **initial algebra**:

$\Delta \subseteq R$

For every **bisimulation** relation *R* on a **final coalgebra**:

 $\pmb{R} \subseteq \Delta$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let (P, \leq) be a preorder and $f : P \rightarrow P$ a monotone map.

Classically, least fixed point induction is:

 $\forall p \in P : f(p) \leq p \Rightarrow \mu f \leq p$

Classically, greatest fixed point coinduction is:

 $\forall p \in P : p \leq f(p) \Rightarrow p \leq \nu f$

Let (P, \leq) be a preorder and $f : P \rightarrow P$ a monotone map.

Classically, least fixed point induction is:

$$\forall p \in P : f(p) \leq p \Rightarrow \mu f \leq p$$

Classically, greatest fixed point coinduction is:

 $\forall p \in P : p \leq f(p) \Rightarrow p \leq \nu f$

Let (P, \leq) be a preorder and $f : P \rightarrow P$ a monotone map.

Classically, least fixed point induction is:

$$\forall p \in P : f(p) \leq p \Rightarrow \mu f \leq p$$

Classically, greatest fixed point coinduction is:

 $\forall p \in P : p \leq f(p) \Rightarrow p \leq \nu f$

Any preorder (P, \leq) is a category, with arrows:

 $p \rightarrow q \equiv p \leq q$

Any monotone map is a functor:

 $p
ightarrow q \quad \mapsto \quad f(p)
ightarrow f(q)$

Lfp induction and gfp coinduction become:

 $\begin{array}{ccc} f(\mu f) - - \rightarrow f(p) & p - - - \rightarrow \nu f \\ \downarrow & \downarrow & \downarrow \\ \mu f - - - \rightarrow p & f(p) - - \rightarrow f(\nu f \end{array}$

(ロ) (同) (三) (三) (三) (○) (○)

Any preorder (P, \leq) is a category, with arrows:

 $p \rightarrow q \equiv p \leq q$

Any monotone map is a functor:

 $p
ightarrow q \quad \mapsto \quad f(p)
ightarrow f(q)$

Lfp induction and gfp coinduction become:

A D F A 同 F A E F A E F A Q A

Any preorder (P, \leq) is a category, with arrows:

 $p \rightarrow q \equiv p \leq q$

Any monotone map is a functor:

$$p
ightarrow q \quad \mapsto \quad f(p)
ightarrow f(q)$$

Lfp induction and gfp coinduction become:

$$\begin{array}{cccc}
f(\mu f) - - \rightarrow f(p) & p - - - \rightarrow \nu f \\
\downarrow & \downarrow & \downarrow \\
\mu f - - - \rightarrow p & f(p) - - \rightarrow f(\nu f)
\end{array}$$

Fixed point (co)induction = initiality and finality

Fixed point (co)induction = initiality and finality

(ロ) (同) (三) (三) (三) (○) (○)

- the behaviour of often infinite, circular systems
 (their equivalence, minimization, synthesis)
- rather: the universal principles underlying this behaviour
- these days applied in many different scientific disciplines

(日) (日) (日) (日) (日) (日) (日)

- the behaviour of often infinite, circular systems
 (their equivalence, minimization, synthesis)
- rather: the universal principles underlying this behaviour
- these days applied in many different scientific disciplines

(日) (日) (日) (日) (日) (日) (日)

- the behaviour of often infinite, circular systems
 (their equivalence, minimization, synthesis)
- rather: the universal principles underlying this behaviour
- these days applied in many different scientific disciplines

- the behaviour of often infinite, circular systems
 (their equivalence, minimization, synthesis)
- rather: the universal principles underlying this behaviour
- these days applied in many different scientific disciplines

Example: dynamical systems

A dynamical system is:

set of states X and a transition function $t: X \rightarrow X$

Notation for transitions:

$$x \to y \equiv t(x) = y$$

Examples:

Example: systems with output

A system with output:

 $\langle o, t \rangle : X \to O \times X$

Notation: $x \xrightarrow{a} y \equiv o(x) = a$ and t(x) = y.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Example: infinite data types

For instance, streams of natural numbers:

 $\mathbb{N}^{\omega} = \{ \sigma \mid \sigma : \mathbb{N} \to \mathbb{N} \}$

The behaviour of streams:

$$(\sigma(\mathbf{0}), \sigma(\mathbf{1}), \sigma(\mathbf{2}), \ldots) \xrightarrow{\sigma(\mathbf{0})} (\sigma(\mathbf{1}), \sigma(\mathbf{2}), \sigma(\mathbf{3}), \ldots)$$

where we call

 $\sigma(0)$: the *initial value* (= head)

 $\sigma' = (\sigma(1), \sigma(2), \sigma(3), \ldots)$: the *derivative* (= tail)

$(1,1,1,\ldots) \xrightarrow{1} (1,1,1,\ldots) \xrightarrow{1} (1,1,1,\ldots) \xrightarrow{1} \cdots$

$(1, 1, 1, \ldots) \xrightarrow{1} (1, 1, 1, \ldots) \xrightarrow{1} (1, 1, 1, \ldots) \xrightarrow{1} \cdots$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

 $(1,2,3,\ldots) \xrightarrow{1} (2,3,4,\ldots) \xrightarrow{2} (3,4,5,\ldots) \xrightarrow{3} \cdots$

$(1,2,3,\ldots) \xrightarrow{1} (2,3,4,\ldots) = (1,2,3,\ldots) + (1,1,1,\ldots)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$(1,2,3,\ldots) \xrightarrow{1} (2,3,4,\ldots) \xrightarrow{2} (3,4,5,\ldots) \xrightarrow{3} \cdots$$

$(1,2,3,\ldots) \xrightarrow{1} (2,3,4,\ldots) = (1,2,3,\ldots) + (1,1,1,\ldots)$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

$$(1,2,3,\ldots) \xrightarrow{1} (2,3,4,\ldots) \xrightarrow{2} (3,4,5,\ldots) \xrightarrow{3} \cdots$$

$(1,2,3,\ldots) \xrightarrow{1} (2,3,4,\ldots) = (1,2,3,\ldots) + (1,1,1,\ldots)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Example: non-well-founded sets

Historically important: Peter Aczel's book.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example: non-well-founded sets

Historically important: Peter Aczel's book.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Example: non-well-founded sets

Historically important: Peter Aczel's book.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Example: automata

A deterministic automaton

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• initial state: *x* • final states: *y* and *z*

• $L(x) = \{a, b\}^* a$

Example: automata

A deterministic automaton

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• initial state: *x* • final states: *y* and *z*

• $L(x) = \{a, b\}^* a$

Example: automata

A deterministic automaton

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- initial state: *x* final states: *y* and *z*
- $L(x) = \{a, b\}^* a$

All these examples: circular behaviour

Where coalgebra is used

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- logic, set theory
- automata
- control theory
- data types
- dynamical systems
- games
- economy
- ecology

6. Discussion

- New way of thinking give it time
- Extensive example: streams (Lecture two)
- Algebra and coalgebra (Lecture three and four)
 - bisimulation up-to
 - cf. CALCO
- Algorithms, tools (Lecture four)
 - Cf. Hacking nondeterminism with induction and coinduction Bonchi and Pous, Comm. ACM Vol. 58(2), 2015

(日) (日) (日) (日) (日) (日) (日)