THE SBM: A VICTIM BLOCK SELECTION METHOD BASED ON MIN-HEAP PRIORITY QUEUES

Asal Khanbadr
Mohammadreza Binesh Marvasti, Seyyed Amir Asghari, Sohrab Khanbadr
ABOUT THE PRESENTER

Asal Khanbadr

Received her B.Sc. degree in computer software engineering from Karaj Azad University, Karaj, Iran, in 2015, and the M.Sc. degree in computer architecture engineering from Kharazmi University, Tehran, Iran in 2019. Her research interests include flash memory-based storage devices, data structures and algorithms.
CONTENTS

1. Introduction
2. Related Works
3. The SBM
4. Simulation Results
5. Conclusion
6. References
INTRODUCTION (1): A NAND FLASH-BASED SSD

Fig. 1. (a) SSD Architecture (b) a NAND Flash Chip Structure [1]
INTRODUCTION (2):
FLASH TRANSLATION LAYER (FTL)

- Address Translation
- Garbage Collection
- Wear-Leveling
INTRODUCTION (3): THE MAIN LIMITATIONS

1. Erase-Before-Write

2. The Limited Endurance of Flash Memory
RELATED WORKS (1):

- Efficient Victim Block Selection (EVBS)
- Progressive Wear-Leveling (PWL)
- Kbit Wear-Leveling (kbit-WL)
RELATED WORKS (2):

• Erasure Interval-based Garbage Collection (EIGC)

• The Earlier Version of This Paper (The Scoring Based Method)
The SBM tries to improve the lifetime of NAND flash memory by erasing flash blocks evenly.
1. An Erased Blocks-Priority Queue

2. An Allocated Blocks-Priority Queue

3. The Global Block Table
THE SBM (3):
EVENTS THAT AFFECT BLOCKS’ SCORES

• The scores are 0s at the initial stage.

• Events increasing a block’s score:
 • Erasing a block (+2)
 • Writing a flash page (+1)

• Events decreasing a block’s score:
 • Invalidating a page (-1)
THE SBM (4):
THE VICTIM BLOCK SELECTION

The main factors affecting the victim block selection:

1. The Number of Valid Pages in a Block
2. The Erase Count of a Block
3. Temporal Locality
THE SBM (5):
ERASED BLOCKS-PRIORITY QUEUES

Fig. 2 an Example of an Erased Blocks-Priority Queue
THE SBM (6):
ALLOCATED BLOCKS-PRIORITY QUEUES

Fig. 3. an Example of an Allocated Blocks-Priority Queue
THE SBM (7): THE REMOVAL OF AN ELEMENT

Fig. 4. Removing an Element from a Queue
THE SBM (8): THE INSERTION OF AN ELEMENT

Fig. 5 Inserting a New Element into a Queue
THE SBM (9): UPDATING A BLOCK’S SCORE

Fig. 6. Updating a Block’s Score
SIMULATION RESULTS (1):

• The simulator: SSDsim simulation environment

• Benchmarks:
 • IOzone
 • FIO
 • BONNIE++
SIMULATION RESULTS (2):

Fig. 7. The SDEC
SIMULATION RESULTS (3):

Fig. 8. Total Erase Count of Blocks
SIMULATION RESULTS (4):

Fig. 9. Average Write Response Time
SIMULATION RESULTS (5):

Fig. 10 Throughput

- k-bitWL
- EIGC+LEF
- PWL
- EVBS
- The scoring method
- The SBM

Benchmarks

Throughput (MB/s)
CONCLUSION

• The SBM can improve the lifetime of NAND flash memory:
 • By at least 2.5 percent compared to our last published journal paper.
 • By at least 39.6 percent compared to the rest of the methods.

• The SBM does not need any search routine for finding victim blocks.

• The time complexity of the main functions is $O(\log n)$.
REFERENCES (1):

REFERENCES (2):

QUESTIONS & ANSWERS

Thank you for watching this video.
Do you have any questions?