ENGINEERING OF
HIGHLY CONCURRENT SYSTEMS

Sung-Shik]ongmansL2

ssj@ou.nl

1Open University of the Netherlands, the Netherlands
2Radboud University Nijmegen, the Netherlands

15 January 2016

ssj@ou.nl

Lots of Iranians have published papers on stuff related to

what I will talk about:
Farhad Arbab, Nesa Asoudeh, Behnaz Changizi, Mehdi
Dastani, Fatemeh Ghassemi, Mahmoud Reza Hashemi,
Abbas Heydarnoori, Hossein Hojjat, Hamed Iravanchi,
Mohammad Izadi, Mohammad Mahdi Jaghoori, Sarmen
Keshishzadeh, Ramtin Khosravi, Farzad Mahdikhani,
Farhad Mavaddat, Roshanak Zilouchian Moghaddam,
MohammadReza Mousavi, Ali Movaghar, Sara NavidPour,
Bahman Pourvatan, Niloofar Razavi, Nima Rouhy,
Hamideh Sabouri, Shaghayegh Sahebi, Mahdi Sargolzaei,
Marjan Sirjani, Samira Tasharofi, Mohsen Vakilian

Observations: [Fok]
* Multicore processors have become ubiquitous

* Parallel programming has become essential

Conceptually, a parallel programs consist of:

* Processes—Units of computation (sequential)

* Known for decades
* No new fundamental challenges

¢ Protocols—Rules of communication (concurrent)

* Niche until recently
¢ Not as well-understood

How to program protocols?

(Main topic of these lectures)

Running example: Producers / consumer protocol

Alice, Bob Carol

Running example: Producers / consumer protocol

Alice, Bob Carol

Properties:

* Asynchronous: Alice/Bob proceed after sending a
message, possibly before Carol has received that message

Running example: Producers / consumer protocol

Alice, Bob Carol

Properties:

* Asynchronous: Alice/Bob proceed after sending a
message, possibly before Carol has received that message

* Reliable: No messages are lost or altered

Running example: Producers / consumer protocol

Alice, Bob Carol

Properties:

* Asynchronous: Alice/Bob proceed after sending a
message, possibly before Carol has received that message

* Reliable: No messages are lost or altered

* Unordered: Alice/Bob send messages in no order

Running example: Producers / consumer protocol

Alice, Bob Carol

Properties:

* Asynchronous: Alice/Bob proceed after sending a
message, possibly before Carol has received that message

* Reliable: No messages are lost or altered
* Unordered: Alice/Bob send messages in no order

* Transactional: After Alice/Bob has sent a message, Carol
must receive that message before the next message is sent

public class Buffer {
public Object content;
public Semaphore empty = new Semaphore(1);
public Semaphore full = new Semaphore(0);
}

Typical implementation

public class Producer extends Thread {
private Buffer buffer;
private Random rng;

public Producer (Buffer buffer, long seed) {
this.buffer = buffer;

this.rng
}

@0verride

= new Random(seed);

public void run() {
while (true) {

Object

buffer

buffer

buffer
}r}

message = rng.nextInt(100);
.empty.acquire();

.content = message;
.full.release();

Typical implementation

public class Consumer extends Thread {
private final Buffer buffer;

public Consumer (Buffer buffer) {
this.buffer = buffer;
}

Q@0verride
public void run() {
while (true) {
buffer.full.acquire();
Object message = buffer.content;
buffer.empty.release();
System.out.println(message) ;

} 1}

Typical implementation

public class Program {
public static void main(String[] args) {
Buffer buffer = new Buffer();

new Producer (buffer, 0).start(); // Alice
new Producer(buffer, 1).start(); // Bob
new Consumer (buffer).start(); // Carol

}}

Typical implementation

Quiz :)

* Rule 1: Five questions
* Rule 2: I ask a question, then I count to five

* Rule 3: You raise your hand (high!) once you know the
answer

Rule 1: Five questions
Rule 2: I ask a question, then I count to five

Rule 3: You raise your hand (high!) once you know the
answer

Rule 4a: If few people raise their hand, nobody answers
Rule 4b: If many people raise their hand, somebody answers

* Question -2: Do you understand the rules?

* Question -2: Do you understand the rules?

* Question -1: Are you going to participate?

1 public class Program { 2 public class Buffer {

2 public static void main(String[] args) { 27 public Object content;

3 Buffer buffer = new Buffer(); 28 public Semaphore empty = new Semaphore(1);
4 29 public Semaphore full = new Semaphore(0);
5 new Producer(buffer, 0).start(); 30 ¥

6 new Producer (buffer, 1).start();

7 new Consumer (buffer).start();

8 +}

9 public class Producer extends Thread { 31 public class Consumer extends Thread {
10 private Buffer buffer; 32 private Buffer buffer;

11 private Random rng; 33

12 34 public Consumer (Buffer buffer) {

13 public Producer (Buffer buffer, long seed) { 35 this.buffer = buffer;

14 this.buffer = buffer; 36 }

15 this.rng = new Random(seed) ; 37

16 } 38 QOverride

17 39 public void run() {

18 QOverride 40 while (true) {

19 public void run() { 11 buffer.full.acquire();

20 while (true) { 2 Object message = buffer.content;
21 Object message = rng.nextInt(100); 43 buffer.empty.release();

22 buffer.empty.acquire(); 44 System.out.println(message);

23 buffer.content = message; 45 Y})

24 buffer.full.release();

5 }}}

1
2
3
4
5
6
7
8

public class Program {
public static void main(String[] args) {
Buffer buffer = new Buffer();

new Producer (buffer, 0).start();
new Producer (buffer, 1).start();
new Consumer (buffer).start();

T}

public class Producer extends Thread {
private Buffer buffer;
private Random rng;

public Producer (Buffer buffer, long seed) {

this.buffer = buffer;
this.rng = new Random(seed) ;

}

@Override
public void run() {
while (true) {

}r}

Object
buffer
buffer
buffer

message = rng.nextInt(100);
.empty.acquire();

.content = message;
.full.release();

31

public class Buffer {
public Object content;
public Semaphore empty = new Semaphore(1);
public Semaphore full = new Semaphore(0);

}

public class Consumer extends Thread {
private Buffer buffer;

public Consumer(Buffer buffer) {
this.buffer = buffer;

}

@Override
public void run() {
while (true) {

}ry

buffer.full.acquire();

Object message = buffer.content;
buffer.empty.release();
System.out.println(message);

Question 1: Where is the message produced?

1
2
3
4
5
6
7
8

public class Program {
public static void main(String[] args) {
Buffer buffer = new Buffer();

new Producer (buffer, 0).start();
new Producer (buffer, 1).start();
new Consumer (buffer).start();

T}

public class Producer extends Thread {
private Buffer buffer;
private Random rng;

public Producer (Buffer buffer, long seed) {

this.buffer = buffer;
this.rng = new Random(seed) ;

}

@Override
public void run() {
while (true) {

}r}

Object
buffer
buffer
buffer

message = rng.nextInt(100);
.empty.acquire();

.content = message;
.full.release();

31

public class Buffer {
public Object content;
public Semaphore empty = new Semaphore(1);
public Semaphore full = new Semaphore(0);

}

public class Consumer extends Thread {
private Buffer buffer;

public Consumer(Buffer buffer) {
this.buffer = buffer;

}

@Override
public void run() {
while (true) {

}ry

buffer.full.acquire();

Object message = buffer.content;
buffer.empty.release();
System.out.println(message);

Question 1: Where is the message produced? Line 21

1
2
3
4
5
6
7
8

public class Program {
public static void main(String[] args) {
Buffer buffer = new Buffer();

new Producer (buffer, 0).start();
new Producer (buffer, 1).start();
new Consumer (buffer).start();

T}

public class Producer extends Thread {
private Buffer buffer;
private Random rng;

public Producer (Buffer buffer, long seed) {
this.buffer = buffer;
this.rng = new Random(seed) ;

}

@Override
public void run() {
while (true) {
Object message = rng.nextInt(100);
buffer.empty.acquire();
buffer.content = message;
buffer.full.release();
}r}

31

public class Buffer {
public Object content;
public Semaphore empty = new Semaphore(1);
public Semaphore full = new Semaphore(0);

}

public class Consumer extends Thread {
private Buffer buffer;

public Consumer(Buffer buffer) {
this.buffer = buffer;

}

@Override
public void run() {
while (true) {

}ry

buffer.full.acquire();

Object message = buffer.content;
buffer.empty.release();
System.out.println(message);

Question 2: Where is the message consumed?

1
2
3
4
5
6
7
8

public class Program {
public static void main(String[] args) {
Buffer buffer = new Buffer();

new Producer (buffer, 0).start();
new Producer (buffer, 1).start();
new Consumer (buffer).start();

T}

public class Producer extends Thread {
private Buffer buffer;
private Random rng;

public Producer (Buffer buffer, long seed) {
this.buffer = buffer;
this.rng = new Random(seed) ;

}

@Override
public void run() {
while (true) {
Object message = rng.nextInt(100);
buffer.empty.acquire();
buffer.content = message;
buffer.full.release();
}r}

31

public class Buffer {
public Object content;
public Semaphore empty = new Semaphore(1);
public Semaphore full = new Semaphore(0);

}

public class Consumer extends Thread {
private Buffer buffer;

public Consumer(Buffer buffer) {
this.buffer = buffer;

}

@Override
public void run() {
while (true) {

}ry

buffer.full.acquire();

Object message = buffer.content;
buffer.empty.release();
System.out.println(message);

Question 2: Where is the message consumed? Line 44

1
2
3
4
5
6
7
8

public class Program {
public static void main(String[] args) {
Buffer buffer = new Buffer();

new Producer (buffer, 0).start();
new Producer (buffer, 1).start();
new Consumer (buffer).start();

T}

public class Producer extends Thread {
private Buffer buffer;
private Random rng;

public Producer (Buffer buffer, long seed) {

this.buff
this.rng
}

@Override

er = buffer;
= new Random(seed);

public void run() {
while (true) {

Object
buffer
buffer
buffer
}r}

message = rng.nextInt(100);
.empty.acquire();

.content = message;
.full.release();

31

public class Buffer {
public Object content;
public Semaphore empty = new Semaphore(1);
public Semaphore full = new Semaphore(0);

}

public class Consumer extends Thread {
private Buffer buffer;

public Consumer(Buffer buffer) {
this.buffer = buffer;

}

@Override
public void run() {
while (true) {

}ry

buffer.full.acquire();

Object message = buffer.content;
buffer.empty.release();
System.out.println(message);

Question 3: Where is a producer’s (non)termination?

1
2
3
4
5
6
7
8

public class Program {
public static void main(String[] args) {
Buffer buffer = new Buffer();

new Producer (buffer, 0).start();
new Producer (buffer, 1).start();
new Consumer (buffer).start();

T}

public class Producer extends Thread {
private Buffer buffer;
private Random rng;

public Producer (Buffer buffer, long seed) {

this.buff
this.rng
}

@Override

er = buffer;
= new Random(seed);

public void run() {
while (true) {

Object
buffer
buffer
buffer
}r}

message = rng.nextInt(100);
.empty.acquire();

.content = message;
.full.release();

31

public class Buffer {
public Object content;
public Semaphore empty = new Semaphore(1);
public Semaphore full = new Semaphore(0);

}

public class Consumer extends Thread {
private Buffer buffer;

public Consumer(Buffer buffer) {
this.buffer = buffer;

}

@Override
public void run() {
while (true) {

}ry

buffer.full.acquire();

Object message = buffer.content;
buffer.empty.release();
System.out.println(message);

Question 3: Where is a producer’s (non)termination? Line 20

1
2
3
4
5
6
7
8

public class Program { 2
public static void main(String[] args) { 27
Buffer buffer = new Buffer(); 28

29

new Producer(buffer, 0).start(); 30

new Producer (buffer, 1).start();
new Consumer (buffer).start();

}
public class Producer extends Thread { 31
private Buffer buffer; 32
private Random rng; 33
34
public Producer (Buffer buffer, long seed) { 35
this.buffer = buffer; 36
this.rng = new Random(seed) ; 37
} 38
39
@Override 40
public void run() { a1
while (true) { 42
Object message = rng.nextInt(100); 43
buffer.empty.acquire(); 44
buffer.content = message; 45
buffer.full.release();
}r}

public class Buffer {
public Object content;
public Semaphore empty = new Semaphore(1);
public Semaphore full = new Semaphore(0);

}

public class Consumer extends Thread {
private Buffer buffer;

public Consumer(Buffer buffer) {
this.buffer = buffer;

}

@Override
public void run() {
while (true) {

}ry

buffer.full.acquire();

Object message = buffer.content;
buffer.empty.release();
System.out.println(message);

Question 4: Where is the consumer?

1
2
3
4
5
6
7
8

public class Program { 2
public static void main(String[] args) { 27
Buffer buffer = new Buffer(); 28

29

new Producer(buffer, 0).start(); 30

new Producer (buffer, 1).start();
new Consumer (buffer).start();

}
public class Producer extends Thread { 31
private Buffer buffer; 32
private Random rng; 33
34
public Producer (Buffer buffer, long seed) { 35
this.buffer = buffer; 36
this.rng = new Random(seed) ; 37
} 38
39
@Override 40
public void run() { a2
while (true) { 42
Object message = rng.nextInt(100); 43
buffer.empty.acquire(); 44
buffer.content = message; 45
buffer.full.release();
}r}

public class Buffer {
public Object content;
public Semaphore empty = new Semaphore(1);
public Semaphore full = new Semaphore(0);

}

public class Consumer extends Thread {
private Buffer buffer;

public Consumer(Buffer buffer) {
this.buffer = buffer;

}

@Override
public void run() {
while (true) {

}ry

buffer.full.acquire();

Object message = buffer.content;
buffer.empty.release();
System.out.println(message);

Question 4: Where is the consumer? Lines 31-45

1
2
3
4
5
6
7
8

public class Program { 2
public static void main(String[] args) { 27
Buffer buffer = new Buffer(); 28

29

new Producer(buffer, 0).start(); 30

new Producer (buffer, 1).start();
new Consumer (buffer).start();

}
public class Producer extends Thread { 31
private Buffer buffer; 32
private Random rng; 33
34
public Producer (Buffer buffer, long seed) { 35
this.buffer = buffer; 36
this.rng = new Random(seed) ; 37
} 38
39
@Override 40
public void run() { a1
while (true) { 42
Object message = rng.nextInt(100); 43
buffer.empty.acquire(); 44
buffer.content = message; 45
buffer.full.release();
}r}

public class Buffer {
public Object content;
public Semaphore empty = new Semaphore(1);
public Semaphore full = new Semaphore(0);

}

public class Consumer extends Thread {
private Buffer buffer;

public Consumer(Buffer buffer) {
this.buffer = buffer;

}

@Override
public void run() {
while (true) {

}ry

buffer.full.acquire();

Object message = buffer.content;
buffer.empty.release();
System.out.println(message);

Question 5: Where is the protocol?

1
2
3
4
5
6
7
8

public class Program { 2
public static void main(String[] args) { 27
Buffer buffer = new Buffer(); 28

29

new Producer(buffer, 0).start(); 30

new Producer (buffer, 1).start();
new Consumer (buffer).start();

}
public class Producer extends Thread { 31
private Buffer buffer; 32
private Random rng; 33
34
public Producer (Buffer buffer, long seed) { 35
this.buffer = buffer; 36
this.rng = new Random(seed) ; 37
} 38
39
@Override 40
public void run() { a1
while (true) { 42
Object message = rng.nextInt(100); 43
buffer.empty.acquire(); 44
buffer.content = message; 45
buffer.full.release();
}r}

public class Buffer {
public Object content;
public Semaphore empty = new Semaphore(1);
public Semaphore full = new Semaphore(0);

}

public class Consumer extends Thread {
private Buffer buffer;

public Consumer(Buffer buffer) {
this.buffer = buffer;

}

@Override
public void run() {
while (true) {

}ry

buffer.full.acquire();

Object message = buffer.content;
buffer.empty.release();
System.out.println(message);

Question 5: Where is the protocol? Ehrm...

1
2
3
4
5
6
7
8

public class Program { 2
public static void main(String[] args) { 27
Buffer buffer = new Buffer(); 28

29

new Producer(buffer, 0).start(); 30

new Producer (buffer, 1).start();
new Consumer (buffer).start();

}
public class Producer extends Thread { 31
private Buffer buffer; 32
private Random rng; 33
34
public Producer (Buffer buffer, long seed) { 35
this.buffer = buffer; 36
this.rng = new Random(seed) ; 37
} 38
39
@Override 40
public void run() { a1
while (true) { 42
Object message = rng.nextInt(100); 43
buffer.empty.acquire(); 44
buffer.content = message; 45
buffer.full.release();
}r}

public class Buffer {
public Object content;
public Semaphore empty = new Semaphore(1);
public Semaphore full = new Semaphore(0);

}

public class Consumer extends Thread {
private Buffer buffer;

public Consumer(Buffer buffer) {
this.buffer = buffer;

}

@Override
public void run() {
while (true) {

}ry

buffer.full.acquire();

Object message = buffer.content;
buffer.empty.release();
System.out.println(message);

Question 5a: Where is asynchrony?

1
2
3
4
5
6
7
8

public class Program {
public static void main(String[] args) {
Buffer buffer = new Buffer();

new Producer (buffer, 0).start();
new Producer (buffer, 1).start();
new Consumer (buffer).start();

T}

public class Producer extends Thread {
private Buffer buffer;
private Random rng;

public Producer (Buffer buffer, long seed) {
this.buffer = buffer;
this.rng = new Random(seed) ;

}

@Override
public void run() {
while (true) {
Object message = rng.nextInt(100);
buffer.empty.acquire();
buffer.content = message;
buffer.full.release();
}r}

31

public class Buffer {
public Object content;
public Semaphore empty = new Semaphore(1);
public Semaphore full = new Semaphore(0);

}

public class Consumer extends Thread {
private Buffer buffer;

public Consumer(Buffer buffer) {
this.buffer = buffer;

}

@Override
public void run() {
while (true) {

}ry

buffer.full.acquire();

Object message = buffer.content;
buffer.empty.release();
System.out.println(message);

Question 5b: Where is reliability?

1
2
3
4
5
6
7
8

public class Program { 2
public static void main(String[] args) { 27
Buffer buffer = new Buffer(); 28

29

new Producer(buffer, 0).start(); 30

new Producer (buffer, 1).start();
new Consumer (buffer).start();

}
public class Producer extends Thread { 31
private Buffer buffer; 32
private Random rng; 33
34
public Producer (Buffer buffer, long seed) { 35
this.buffer = buffer; 36
this.rng = new Random(seed) ; 37
} 38
39
@Override 40
public void run() { a1
while (true) { 42
Object message = rng.nextInt(100); 43
buffer.empty.acquire(); 44
buffer.content = message; 45
buffer.full.release();
}r}

public class Buffer {
public Object content;
public Semaphore empty = new Semaphore(1);
public Semaphore full = new Semaphore(0);
}

public class Consumer extends Thread {
private Buffer buffer;

public Consumer(Buffer buffer) {
this.buffer = buffer;
}

@0verride
public void run() {
while (true) {
buffer.full.acquire();
Object message = buffer.content;
buffer.empty.release();
System.out.println(message);

Question 5¢: Where is unorderedness?

1
2
3
4
5
6
7
8

public class Program { 2
public static void main(String[] args) { 27
Buffer buffer = new Buffer(); 28

29

new Producer(buffer, 0).start(); 30

new Producer (buffer, 1).start();
new Consumer (buffer).start();

}
public class Producer extends Thread { 31
private Buffer buffer; 32
private Random rng; 33
34
public Producer (Buffer buffer, long seed) { 35
this.buffer = buffer; 36
this.rng = new Random(seed) ; 37
} 38
39
@Override 40
public void run() { a1
while (true) { 42
Object message = rng.nextInt(100); 43
buffer.empty.acquire(); 44
buffer.content = message; 45
buffer.full.release();
}r}

public class Buffer {
public Object content;
public Semaphore empty = new Semaphore(1);
public Semaphore full = new Semaphore(0);
}

public class Consumer extends Thread {
private Buffer buffer;

public Consumer(Buffer buffer) {
this.buffer = buffer;
}

@0verride
public void run() {
while (true) {
buffer.full.acquire();
Object message = buffer.content;
buffer.empty.release();
System.out.println(message);

Question 5d: Where is transactionality?

1
2
3
4
5
6
7
8

public class Program {
public static void main(String[] args) {
Buffer buffer = new Buffer();

new Producer (buffer, 0).start();
new Producer (buffer, 1).start();
new Consumer (buffer).start();

T}

public class Producer extends Thread {
private Buffer buffer;
private Random rng;

public Producer (Buffer buffer, long seed) {
this.buffer = buffer;
this.rng = new Random(seed) ;

}

@Override
public void run() {
while (true) {
Object message = rng.nextInt(100);
buffer.empty.acquire();
buffer.content = message;
buffer.full.release();
}r}

31

public class Buffer {
public Object content;
public Semaphore empty = new Semaphore(1);
public Semaphore full = new Semaphore(0);

}

public class Consumer extends Thread {
private Buffer buffer;

public Consumer(Buffer buffer) {
this.buffer = buffer;

}

@Override
public void run() {
while (true) {

}ry

buffer.full.acquire();

Object message = buffer.content;
buffer.empty.release();
System.out.println(message);

Question 5: Where is the protocol?

1
2
3
4
5
6
7
8

public class Program {
public static void main(String[] args) {
Buffer buffer = new Buffer();

new Producer (buffer, 0).start();
new Producer (buffer, 1).start();
new Consumer (buffer).start();

T}

public class Producer extends Thread {
private Buffer buffer;
private Random rng;

public Producer (Buffer buffer, long seed) {

this.buffer = buffer;
this.rng = new Random(seed) ;

}

@Override
public void run() {
while (true) {

}r}

Object
buffer
buffer
buffer

message = rng.nextInt(100);
.empty.acquire();

.content = message;
.full.release();

31

public class Buffer {
public Object content;
public Semaphore empty = new Semaphore(1);
public Semaphore full = new Semaphore(0);

}

public class Consumer extends Thread {
private Buffer buffer;

public Consumer(Buffer buffer) {
this.buffer = buffer;

}

@Override
public void run() {
while (true) {

}ry

buffer.full.acquire();

Object message = buffer.content;
buffer.empty.release();
System.out.println(message);

Lines [10, 13-14, 22-24], [26-30], [32, 34-35, 41-43] (?)

* Observation: The protocol is not a separate module

* Parnas’ advantages of modularization:

“(1) managerial—development time should be
shortened because separate groups would work on each
module with little need for communication; (2)
product flexibility—it should be possible to make
drastic changes to one module without a need to
change others; (3) comprehensibility—it should be
possible to study the system one module at a time.”

* Observation: The protocol is not a separate module

* Parnas’ advantages of modularization:

“(1) managerial—development time should be
shortened because separate groups would work on each
module with little need for communication; (2)
product flexibility—it should be possible to make
drastic changes to one module without a need to
change others; (3) comprehensibility—it should be
possible to study the system one module at a time.”

* Protocol modularization seems a good idea

1 public class Program { 29 public class Producer extends Thread {
2 public static void main(String[] args) { 30 private Protocol protocol;
3 Protocol protocol = new Protocol(); 31 private Random rng;
4 32
5 new Producer(protocol, 0).start(); 33 public Producer (Protocol protocol, long seed) {
6 new Producer (protocol, 1).start(); 34 this.protocol = protocol;
7 new Consumer (protocol).start(); 35 this.rng = new Random(seed);
8 } 1} 36
37
9 public class Protocol { 38 @Override
10 private Buffer buffer = new Buffer(); 39 public void run() {
1 40 while (true) {
12 public void send(Object message) { 41 Object message = rng.nextInt(100);
13 buffer.empty.acquire(); 42 protocol.send(message) ;
14 buffer.content = message; 43 }}}
15 buffer.full.release();
16 } 44 public class Consumer extends Thread {
17 45 private Protocol protocol;
18 public Object receive() { 46
19 buffer.full.acquire(); 47 public Consumer (Protocol protocol) {
20 Object message = buffer.content; 48 this.protocol = protocol;
21 buffer.empty.release(); 49 }
22 return message; 50
23 }} 51 QOverride
52 public void run() {
24 public class Buffer { 53 while (true) {
25 public Object content; 54 Object message = protocol.receive();
26 public Semaphore empty = new Semaphore(1); 55 System.out.println(message) ;
27 public Semaphore full = new Semaphore(0); 56 +)}

28

Modularize the protocol in its own class

1
2
3
4
5
6
7
8

24
25
26
27
28

public class Program { 29 public class Producer extends Thread {

public static void main(String[] args) { 30 private Protocol protocol;
Protocol protocol = new Protocol(); 31 private Random rng;
32
new Producer (protocol, 0).start(); 33 public Producer (Protocol protocol, long seed) {
new Producer (protocol, 1).start(); 34 this.protocol = protocol;
new Consumer (protocol).start(); 35 this.rng = new Random(seed);
T} 36
37
public class Protocol { 38 @Override
private Buffer buffer = new Buffer(); 39 public void run() {
40 while (true) {
public void send(Object message) { 41 Object message = rng.nextInt(100);
buffer.empty.acquire(); 42 protocol.send(message) ;
buffer.content = message; 43 }}}
buffer.full.release();
¥ 4 public class Consumer extends Thread {
45 private Protocol protocol;
public Object receive() { 46
buffer.full.acquire(); 47 public Consumer (Protocol protocol) {
Object message = buffer.content; 48 this.protocol = protocol;
buffer.empty.release(); 49 }
return message; 50
B 3 51 QOverride
52 public void run() {
public class Buffer { 53 while (true) {
public Object content; 54 Object message = protocol.receive();
public Semaphore empty = new Semaphore(1); 55 System.out.println(message) ;
public Semaphore full = new Semaphore(0); 56 +)}

Question 5: Where is the protocol? Lines 9-28

1
2
3
4
5
6
7
8

24
25
26
27
28

public class Program { 29 public class Producer extends Thread {

public static void main(String[] args) { 30 private Protocol protocol;
Protocol protocol = new Protocol(); 31 private Random rng;
32
new Producer (protocol, 0).start(); 33 public Producer (Protocol protocol, long seed) {
new Producer (protocol, 1).start(); 34 this.protocol = protocol;
new Consumer (protocol).start(); 35 this.rng = new Random(seed);
T} 36
37
public class Protocol { 38 @Override
private Buffer buffer = new Buffer(); 39 public void run() {
40 while (true) {
public void send(Object message) { 41 Object message = rng.nextInt(100);
buffer.empty.acquire(); 42 protocol.send(message) ;
buffer.content = message; 43 }}}
buffer.full.release();
¥ 4 public class Consumer extends Thread {
45 private Protocol protocol;
public Object receive() { 46
buffer.full.acquire(); 47 public Consumer (Protocol protocol) {
Object message = buffer.content; 48 this.protocol = protocol;
buffer.empty.release(); 49 }
return message; 50
B 3 51 QOverride
52 public void run() {
public class Buffer { 53 while (true) {
public Object content; 54 Object message = protocol.receive();
public Semaphore empty = new Semaphore(1); 55 System.out.println(message) ;
public Semaphore full = new Semaphore(0); 56 +)}

Claim: Parnas” advantages of modularization apply

Managerial advantages

(“Obviously”...)

Product flexibility advantages

Running example’: Producers / consumer protocol

Alice, Bob Carol

Properties:

* Asynchronous: Alice/Bob proceed after sending a
message, possibly before Carol has received that message

* Reliable: No messages are lost or altered

* Unordered: Alice/Bob send messages in no order

* Transactional-After-Alice/Bob-has-senta-message,Carol
et before .

1
2
3
4
5

24
25
26
27
28

public class Program { 29 public class Producer extends Thread {

public static void main(String[] args) { 30 private Protocol protocol;
Protocol protocol = new Protocol(); 31 private Random rng;
32
new Producer (protocol, 0).start(); 33 public Producer (Protocol protocol, long seed) {
new Producer(protocol, 1).start(); 34 this.protocol = protocol;
new Consumer (protocol).start(); 35 this.rng = new Random(seed);
}} 36 ¥
37
public class Protocol { 38 Q0verride
private Buffer buffer = new Buffer(); 39 public void run() {
40 while (true) {
public void send(Object message) { 1 Object message = rng.nextInt(100);
buffer.empty.acquire(); 42 protocol.send(message) ;
buffer.content.enq(message) ; 43 1} 1}

buffer.full.release();
44 public class Consumer extends Thread {
45 private Protocol protocol;

public Object receive() { 46
buffer.full.acquire(); 47 public Consumer (Protocol protocol) {
Object message = buffer.content.deq(); 48 this.protocol = protocol;
buffer.empty.release(); 49 }
return message; 50
+} 51 Q0verride
52 public void run() {
public class Buffer { 53 while (true) {
public Queue<?> content = new LockFreeQueue(); 54 Object message = protocol.receive();
public Semaphore empty = new Semaphore(2); 55 System.out.println(message) ;
public Semaphore full = new Semaphore(0); 56 } } %}

Use a concurrent queue, such as LockFreeQueue [Fok]

QoW N e

®» N o

24
25
26
27
28

30

31

32

33

34

35

36

37

public class Protocol { 38

private Buffer buffer = new Buffer(); 39

40

public void send(Object message) { 1

buffer.empty.acquire(); 42

buffer.content.enq(message) ; 43
buffer.full.release();

44

45

public Object receive() { 46

buffer.full.acquire(); 47

Object message = buffer.content.deq(); 48

buffer.empty.release(); 49

return message; 50

+ 3 51

52

public class Buffer { 53

public Queue<?> content = new LockFreeQueue(); 54

public Semaphore empty = new Semaphore(2); 55

public Semaphore full = new Semaphore(0); 56

Classes Program, Producer, and Consumer remain unaffected

Running example”: Producers / consumer protocol

Alice, Bob Carol

Properties:
* Asynchronous: Alice/Bob proceed after sending a
message, possibly before Carol has received that message
* Reliable: No messages are lost or altered

* Unordered: Alice/Bob send messages in no order
* Transactional-After-Alice/Bob-hassenta-message,Carol
o t] beforetl .
* Considerate: Alice/Bob cannot send her /his next message
before Carol has received her/his current message

public class Protocol {

private Map<Long,Buffer> map = new HashMap<>();

public void send(Object message) {
long id = Thread.currentThread.getId();
if (!'map.containsKey(id))
map.put(id, new Buffer());

Buffer buffer = map.get(id);
buffer.empty.acquire();
buffer.content = message;
buffer.full.release();

}

public Object receive() {
while (true) {
for (Buffer buffer : map.values()) {
if (buffer.full.tryAcquire()) {
Object message = buffer.content;
buffer.empty.release();
return message;

}rrir}

public class Buffer {

}

public Object content;
public Semaphore empty

public Semaphore

full

Use multiple buffers and busy-waiting

new Semaphore(1);
new Semaphore(0) ;

public class Protocol {

private Map<Long,Buffer> map = new HashMap<>();

public void send(Object message) {
long id = Thread.currentThread.getId();
if (!'map.containsKey(id))
map.put(id, new Buffer());

Buffer buffer = map.get(id);
buffer.empty.acquire();
buffer.content = message;
buffer.full.release();

}

public Object receive() {
while (true) {
for (Buffer buffer : map.values()) {
if (buffer.full.tryAcquire()) {
Object message = buffer.content;
buffer.empty.release();
return message;

}rrir}

public class Buffer {

}

public Object content;
public Semaphore empty

public Semaphore

full

new Semaphore(1);
new Semaphore(0) ;

Use multiple buffers and-busy-waiting?

9

public class Protocol {

private Map<Long,Buffer> map = new HashMap<>();
private Semaphore available = new Semaphore(0);

public void send(Object message) {
long id = Thread.currentThread.getId();
if (!'map.containsKey(id))
map.put(id, new Buffer());

Buffer buffer = map.get(id);
buffer.empty.acquire();
buffer.content = message;
buffer.isFull = true;
available.release();

}
public Object receive() {
while—ttrae)—

available.acquire();
for (Buffer buffer : map.values()) {

if (buffer.isFull) {
Object message = buffer.content;
buffer.isFull = false;
buffer.empty.release();
return message;

}r3+1r}

36
37
38
39

41

public class Buffer {
public Object content;

public Semaphore empty = new Semaphore(1);

lieS £ull

g

N

o)+

b
publie fatl

public boolean isFull =

false;

Use multiple buffers and-busy-waiting

Comprehensibility advantages

public class Protocol { 24 public class Buffer {

private Buffer buffer = new Buffer(); 25 public Object content;
26 public Semaphore empty = new Semaphore(1);
public void send(Object message) { 27 public Semaphore full = new Semaphore(0);
buffer.empty.acquire(); 28

buffer.content = message;
buffer.full.release();
}

public Object receive() {
buffer.full.acquire();
Object message = buffer.content;
buffer.empty.release();
return message;

T}

Running example: Is the protocol correct?

public class Protocol { 24 public class Buffer {

private Buffer buffer = new Buffer(); 25 public Object content;
26 public Semaphore empty = new Semaphore(1);
public void send(Object message) { 27 public Semaphore full = new Semaphore(0);
buffer.empty.acquire(); 28

}

buffer.content = message;
buffer.full.release();

public Object receive() {

T}

buffer.full.acquire();

Object message = buffer.content;
buffer.empty.release();

return message;

Running example: Is communication really reliable?

public class Protocol { 24

private Buffer buffer = new Buffer(); 25
26

public void send(Object message) { 27
buffer.empty.acquire(); 28

}

buffer.content = message;
buffer.full.release();

public Object receive() {

T}

buffer.full.acquire();

Object message = buffer.content;
buffer.empty.release();

return message;

public class Buffer {
public Object cont
public Semaphore e
public Semaphore

ent;
mpty
full

new Semaphore(1);
new Semaphore(0) ;

Running example: Should Buffer.content be volatile? [Fok]

e Should Buffer.content be volatile? No

* From the Java APL:
“Actions in a thread prior to calling a "release”
method such as release() happen-before actions

following a successful "acquire” method such as
acquire() in another thread.”

public class Protocol { 24 public class Buffer {

private Buffer buffer = new Buffer(); 25 public Queue<?> content = new LockFreeQueue();
26 public Semaphore empty = new Semaphore(2);
public void send(Object message) { 27 public Semaphore full = new Semaphore(0);
buffer.empty.acquire(); 28

}

buffer.content.enq(message) ;
buffer.full.release();

public Object receive() {

T}

buffer.full.acquire();

Object message = buffer.content.deq();
buffer.empty.release();

return message;

Running example’: Is the protocol correct?

public class Protocol { 24 public class Buffer {

private Buffer buffer = new Buffer(); 25 public Queue<?> content = new LockFreeQueue();
26 public Semaphore empty = new Semaphore(2);
public void send(Object message) { 27 public Semaphore full = new Semaphore(0);
buffer.empty.acquire(); 28

}

buffer.content.enq(message) ;
buffer.full.release();

public Object receive() {

T}

buffer.full.acquire();

Object message = buffer.content.deq();
buffer.empty.release();

return message;

Yes (because LockFreeQueue is correct [Fok])

9

public class Protocol {
private Map<Long,Buffer> map = new HashMap<>();

public void send(Object message) {
long id = Thread.currentThread.getId();
if (!'map.containsKey(id))
map.put(id, new Buffer());

Buffer buffer = map.get(id);
buffer.empty.acquire();
buffer.content = message;
buffer.full.release();

}

public Object receive() {
while (true) {
for (Buffer buffer : map.values()) {
if (buffer.full.tryAcquire()) {
Object message = buffer.content;
buffer.empty.release();
return message;

}rrir}

public class Buffer {

}

public Object content;
public Semaphore empty

public Semaphore

full

new Semaphore(1);
new Semaphore(0) ;

Running example” (busy-waiting): Is the protocol correct?

public class Protocol {

private Map<Long,Buffer> map = new HashMap<>();

public void send(Object message) {
long id = Thread.currentThread.getId();
if (!'map.containsKey(id))
map.put(id, new Buffer());

Buffer buffer = map.get(id);
buffer.empty.acquire();
buffer.content = message;
buffer.full.release();

}

public Object receive() {
while (true) {
for (Buffer buffer : map.values()) {
if (buffer.full.tryAcquire()) {
Object message = buffer.content;
buffer.empty.release();
return message;

}rrir}

public class Buffer {

}

public Object content;
public Semaphore empty

public Semaphore

full

new Semaphore(1);
new Semaphore(0) ;

No (because HashMap is not thread-safe)

9

public class Protocol { 36
private Map<Long,Buffer> map = new HashMap<>(); 37
private Semaphore available = new Semaphore(0); 38

39
public void send(Object message) { 40
long id = Thread.currentThread.getId(); 41

if (!'map.containsKey(id))
map.put(id, new Buffer());

Buffer buffer = map.get(id);
buffer.empty.acquire();
buffer.content = message;
buffer.isFull = true;
available.release();

}
public Object receive() {
while—ttrae)—

available.acquire();
for (Buffer buffer : map.values()) {
if (buffer.isFull) {
Object message = buffer.content;
buffer.isFull = false;
buffer.empty.release();
return message;

}r3+1r}

public class Buffer {
public Object content;
public Semaphore empty = new Semaphore(1);
JHe—S. £y} Q rL II\\’

b
publie fall——new

public boolean isFull =

false;

Running example” (busy-waiting): Is the protocol correct?

9

public class Protocol {
private Map<Long,Buffer> map =

public void send(Object message) {
long id = Thread.currentThread.getId();
if (!'map.containsKey(id))
map.put(id, new Buffer());

Buffer buffer = map.get(id);
buffer.empty.acquire();
buffer.content = message;
buffer.isFull = true;
available.release();

}
public Object receive() {
while—ttrae)—

available.acquire();
for (Buffer buffer : map.values()) {
if (buffer.isFull) {
Object message = buffer.content;
buffer.isFull = false;
buffer.empty.release();
return message;

}r3+1r}

new HashMap<>();
private Semaphore available = new Semaphore(0);

36
37
38
39

41

public class Buffer {
public Object content;
public Semaphore empty = new Semaphore(1);
JHe—S. £y} Q - II\\

b
publie fall——new

public boolean isFull = false;

No (because Buffer.content is not volatile)

* Observation: Despite modularization, reasoning about
protocols is still difficult [Fok, Sif]

* Accounting for all, seemingly nondeterministic, thread
schedulings is too difficult

* Observation: Despite modularization, reasoning about
protocols is still difficult [Fok, Sif]

* Accounting for all, seemingly nondeterministic, thread
schedulings is too difficult

* Concurrency primitives (semaphores, monitors, etc.) are
not the right level of abstraction for “average
programmers” to effectively write correct and efficient
protocol code

* Programmers need to concern themselves with too many
protocol-irrelevant, low-level details
* (Assembly language vs. C, C++, Java, etc.)

Alternatives:
* Software transactional memory [Fok]
* Algorithmic skeletons / parallellism patterns
* Domain-specific languages (DSL) for protocols

Alternatives:
* Software transactional memory [Fok]
* Algorithmic skeletons / parallellism patterns
* Domain-specific languages (DSL) for protocols

Programming model

For now, forget everything you know about
Sempahores, data races, shared memory, mutual exclusion, ... [Fok]

For now, forget everything you know about
SempahOI'es, data races, shared memory, mutual exclusion, ... [Fok]

Let there be only (sequential) computation and ports [Sif]

* Every process owns a set of ports

Every process owns a set of ports

Ports mark the interface between processes
All inter-process communication occurs through ports

(Conceptually, there is no shared memory!)

Running examples:

Alice
AO

Bob

Carol

* Processes perform blocking operations on ports

public interface OutputPort {
public void put(Object datum);
}

public interface InputPort {
public Object get();
}

* Processes perform blocking operations on ports

public interface OutputPort {
public void put(Object datum);
}

public interface InputPort {
public Object get();
}

* Processes are oblivious to data-flows between ports

* When put (d) returns, they know not whereto d goes
* When d=get () returns, they know not wherefrom d comes

* Only protocols state how data flow

Running examples:

Alice put (d)

public class Processes {

public static void Producer (OutputPort port, long seed) {
Random rng = new Random(seed) ;
while (true) {
Object message = rng.nextInt(100);
port.put (message) ;

}}

public static void Consumer (InputPort port) {
while (true) {
Object message = port.get();
System.out.println(message) ;

} 1}

Running examples: Port-based implementation

public class Program {
public static void main(String[] args) {
final OutputPort A = Port.newOutputPort();
final OutputPort B = Port.newOutputPort();
final InputPort C = Port.newInputPort();

(new Protocol(A,B,C)).start();

Thread alice = new Thread() {

public void run() { Processes.Producer(4, 0) } }
Thread bob = new Thread() {

public void run() { Processes.Producer(B, 1) } }
Thread carol = new Thread() {

public void run() { Processes.Consumer(C) } }

alice.start();
bob.start();
carol.start();

}}

Running examples: Port-based implementation

public class Program {
public static void main(String[] args) {
final OutputPort A = Port.newOutputPort();
final OutputPort B = Port.newOutputPort();
final InputPort C = Port.newInputPort();

(new Protocol(A,B,C)).start();

Thread alice = new Thread() {

public void run() { Processes.Producer(4, 0) } }
Thread bob = new Thread() {

public void run() { Processes.Producer(B, 1) } }
Thread carol = new Thread() {

public void run() { Processes.Consumer(C) } }

alice.start();
bob.start();
carol.start();

}}

Protocol is specified in, and generated from, a protocol DSL

public class Program {
public static void main(String[] args) {
final OutputPort A = Port.newOutputPort();
final OutputPort B = Port.newOutputPort();
final InputPort C = Port.newInputPort();

(new Protocol(A,B,C)).start();

Thread alice = new Thread() {

public void run() { Processes.Producer(4, 0) } }
Thread bob = new Thread() {

public void run() { Processes.Producer(B, 1) } }
Thread carol = new Thread() {

public void run() { Processes.Consumer(C) } }

alice.start();
bob.start();
carol.start();

}}

(And so is Program)

Burning questions:

* What is the specification like?
* What is the syntax of a protocol DSL?
* What is the semantics of a protocol DSL?
* What is the expressiveness of a protocol DSL?

* What is the generation like?
* How to generate lower-level protocol code (e.g., Java) from
higher-level protocol specs?
* How to efficiently generate code from specs?
* How to generate efficient code from specs?

Summary:
1 Program processes in a general-purpose language (GPL)
2 Program protocols in a domain-specific language (DSL)

3 Have a DSL compiler:
1 Generate GPL code for DSL code
2 Merge all GPL code into an integrated program
4 Have a GPL compiler generate an executable for the
integrated program

What is the specification like?

What are suitable
programming constructs
to denote such models?

—
Approach: First semantics , then syntax
—_——
What are suitable

models of protocols?

* Observation: During a run, put/get actions complete

t Alice Bob Carol

1 A.put(60) A.put (60)
2 60=C.get () 60=C.get ()

3 B.put (85) B.put (85)
4 85=C.get () 85=C.get ()

5 B.put (88) B.put (88)
6 88=C.get () 88=C.get ()

7 A.put(48) A.put (48)
8 48=C.get () 48=C.get ()

9 B.put (47) B.put (47)
10 47=C

47=C.get ()

.get()

* Observation: During a run, put/get actions complete

t Alice Bob Carol interaction
1 A.put(60) A.put (60)
2 60=C.get () 60=C.get ()

3 B.put (85) B.put (85)
4 85=C.get () 85=C.get ()

5 B.put (88) B.put (88)
6 88=C.get () 88=C.get ()

7 A.put(48) A.put (48)
8 48=C.get () 48=C.get ()

9 B.put (47) B.put (47)
10 47=C

47=C.get ()

.get()

* Terminology:

* A sequence of completions is an interaction
* A set of admissible interactions is a protocol

Henceforth:
* N denotes the set of natural numbers
* P denotes the set of ports
* D denotes the set of data

Attempt 1: An interaction is a functionu : N — P
(o1, equivalently, a stream u € P¥ [Rut])

Running example:
e A,C,B,C,B,C,A,C,B,C,...
e A,C,A,CAC,AC,AC,...
e B,C,A,C,B,C,A,C,B,C,...
e A,B,C,C,AB,C,C,AB,...

Attempt 1: An interaction is a functionu : N — P
(o1, equivalently, a stream u € P¥ [Rut])

Running example:
e A,C,B,C,B,C,A,C,B,C,...
e A,C,A,CAC,AC,AC,...
e B,C,A,C,B,C,A,C,B,C,...

* B G CHAB G A B [nontransactional]

* Problem: Cannot express synchronization
* Solution: Sets instead of elements

Attempt 2: An interaction is a function u : N — 2F
(or, equivalently, a stream u € (2F)“ [Rut])

Running example:
* {a},{c},{B},{c},{B}, {c}, {a},{C}.{B}, {cC}, ...
o {a},{c}.{a},{c}.{a}, {c},{a},{c}.{a},{c}, ...
* {B},{c}.{a},{c},{B}, {c},{a},{C}.{B}, {cC}, ...
» {A,C}, {B,C},{A,C}, {B,C},{A,C}, {B,C},...

Attempt 2: An interaction is a function u : N — 2°
(or, equivalently, a stream u € (2%)« [Rut])

Running example:
* {A},{C}, {B}, {C}, {B}, {C}, {A}, {C}, {B}, {C}, ...
* {A} {C} {A} {C}, {A}, {C}, {A}, {C}, {A}, {C}, - ..
* {B},{C}, {A}, {C}, {B}, {C}, {A}, {C}, {B}, {C},...

—~— [synchronous]

* Problem: Cannot express data-sensitivity

e Solution: Functions instead of sets

Attempt 3: An interaction is a functionu : N - P —~ D
(or, equivalently, a stream u € (P — D)~ [Rut])

Running example:

o {A+— 60},{C+ 60},{B+s 85},{C s 85}, {B s 88},...
{A+— 60},{C > 60}, {A— 48},{C > 48},{A — 29},...
{B > 85},{C s 85},{A— 60},{C— 60}, {B— 88},...
{A > 60,C — 60}, {B > 85,C > 85},...

{A— 60}, {C > nil},{B— 85}, {C+s 85},...
{A+— 60},{B+> 85}, {C+> 60},...

Attempt 3: An interaction is a functionu : N - P —~ D
(or, equivalently, a stream u € (P — D)~ [Rut])

Running example:

o {A— 60},{C+— 60}, {B~ 85}, {C+> 85}, {B s 88},...
{A+— 60},{C > 60}, {A— 48},{C > 48},{A — 29},...
{B+ 85},{C— 85}, {A+— 60},{C— 60}, {B+> 88},...

. : : : = [synchronous]
{A— 60}, {C > nil},{B— 85}, {C+s 85},...
{A+— 60},{B+—> 85}, {C+> 60},...

Attempt 3: An interaction is a functionu : N - P —~ D
(or, equivalently, a stream u € (P — D)~ [Rut])

Running example:
o {A— 60},{C+— 60}, {B~ 85}, {C+> 85}, {B s 88},...
o {A— 60},{C+— 60}, {A— 48}, {C+> 48}, {A— 29},...
o {B— 85},{C+ 85},{A~ 60},{C+> 60},{B s 88},...
. : : : = [synchronous]
. - i1 - —— [unreliable]
e {A—60},{B+> 85},{C+> 60},...

Attempt 3: An interaction is a functionu : N - P —~ D
(or, equivalently, a stream u € (P — D)~ [Rut])

Running example:
o {A— 60},{C+— 60}, {B~ 85}, {C+> 85}, {B s 88},...
o {A— 60},{C+— 60}, {A— 48}, {C+> 48}, {A— 29},...

 {B 85},{C s 85}, {A > 60},{C > 60}, {B > 88},...
; ; ; R [synchronous]

° i ; —— [unreliable]

[nontransactional]

Finally: A protocolisasetL C N — (P — D)
(or, equivalently, a predicate L C (P — D)“)

Running example:

w:N— (P—D)

[— J.,|and [Dom(w(i)) € {{A},{B}} forall i € Neven]
~ 1% /and [Dom(w(i)) = {C} forall i € Nogq]
and [Img(w(i)) = Img(w(i + 1)) for all i € Neen|
(Or, equivalently:
L = Dom(w(0)) € {{A}, {B}}
A Dom(w'(0) = {C})
A Img(w(0)) = Img(@/(0)
A L(w")

[Rut])

Running example:

Alice TR)
AO._ g
= Dom(w(0)) € {{4},
A Dom(w’(0) = {C})
A Img(w(0)) = Img(w
Bob A L")

But...

Observations:
* Directly using set-based (or, equivalently, predicate-based)
protocol specs is inconvenient for:

* Automated composition
* Automated code generation
* Automated reasoning

Observations:

* Directly using set-based (or, equivalently, predicate-based)
protocol specs is inconvenient for:

* Automated composition
* Automated code generation
* Automated reasoning

* Interactions are words
* Protocols are languages

* Represent languages as automata

Attempt 1: A protocol is a tuple (Q, P, —, qo),
where — C Q x (P—D) xQ

Attempt 1: A protocol is a tuple (Q, P, —, qo),
where — C Q x (P—D) xQ

{c+—0}
{A— 0}

{B+— 0}

Running example, D = {0}:

Attempt 1: A protocol is a tuple (Q, P, —, qo),
where — C Q x (P—D) xQ

Running example, D = {0, 1}:

{C+—1} {c+—0}
{A—1} {A— 0}

{B—1} {B+— 0}

Attempt 1: A protocol is a tuple (Q, P, —, qo),
where — C Q x (P—D) xQ

Running example, D = {0,1,2,.
{C+ 11 {c+—0}
{c S 2 {A— 0}
k‘) 2 {B — 0}

&B”

Attempt 1: A protocol is a tuple (Q, P, —, qo),
where — C Q x (P—D) xQ

Running example, D = {0,1,2,.

{C»—>11 {c+—0}
cwz {a— 0}
wz 4% {B+ 0}

ww

<> N
Jnnieg~el®

* Problem: Infinitely many states
(Because every state encodes a particular buffer content)

* Solution: Model buffers explicitly

Henceforth:
* M denotes the set of memory cells

* M — D denotes the set of memory snapshots
(ranged over by 1)

Attempt 2: A protocol is a tuple (Q, P, M, —. qo, o),
where — CQx (M —D)x (P—-D)x (M—D) xQ

Attempt 2: A protocol is a tuple (Q, P, M, —. qo, o),
where — CQx (M —D)x (P—-D)x (M—D) xQ

Running example, D = {0}:

{x — 0},{C+— 0};{x—nil}
{x+—nil}, {A—0},{x— 0}

{x — nil},{B+—0},{x — 0}

Attempt 2: A protocol is a tuple (Q, P, M, —. qo, o),
where — CQx (M —D)x (P—-D)x (M—D) xQ

Running example, D = {0, 1}:

{x+— 1}, {C— 1}, {x — nil}
{x — 0},{C— 0}, {x —nil}
{x+—nil}, {A—0},{x— 0}

x — nil}, {B—0},{x— 0

= nilh{A— 1} {x—
{x+—nil}{B—1},{x— 1}

Attempt 2: A protocol is a tuple (Q, P, M, —. qo, o),
where — CQx (M —D)x (P—-D)x (M—D) xQ

Running example, D = {0,1,2,...}:
{x— 2}, {C+—2},{x — nil}

x — 1}, {C+— 1}, {x — nil
{x — 0},{C— 0}, {x —nil}
{x+—nil}, {A—0},{x— 0}

x — nil}, {B—0},{x— 0

= nilh{A— 1} {x—
{x+— nil}; {B—1},{x— 1}

—nilh{A—2}{x—~
{x — nil};{B+—2},{x — 2}

Attempt 2: A protocol is a tuple (Q, P, M, —. qo, o),
where — CQx (M —D)x (P—-D)x (M—D) xQ

Running example, [{x— 3}, {C+> 3}, {x — nil}
2}, {C+—2},{x—n

x — 1}, {C+— 1}, {x — nil
{x — 0},{C— 0}, {x —nil}
{x+—nil}, {A—0},{x— 0}

x — nil}, {B—0},{x— 0

= nilh{A— 1} {x—
{x+— nil}; {B—1},{x— 1}

—nilh{A—2}{x—~
x — nil};{B— 2} {x— 2

nil}, {A— 3}, {x
{x > nil},{B+—3},{x — 3}

{x—8}{

8\ {x — nil}
{x— 7}, £ — 7}H\\x — nil}

{x — 6 YAC — 6},
Attempt 2: A p‘?ni-nr‘ A At

{c,_>5} { \ nll}’M — quMO)
where—>CQ>< (1

1) X RN\ L)) %
{4}, {1}

Running example, [/ 73}, {C 3} {x PN

/ 2}, {C+—2},{x—n
X»—) 1},{C»—>1}7{x>—>nil

» {x — 0},{C+— 0};{x—nil}
(.
{x—~nil},;{a — 0}, {x— 0}

x —nil}, {B+—0},{x— 0

= nilh{A— 1} {x—
{x = nil}; {B—1},{x — 1}

—nil}{A—2} {x—
x — nil};{B— 2} {x— 2

nil}, {A— 3}, {x
— nil}, {B+— 3}, {x —

< nil}, {A > 4}, {x 1
. 1 (6. « A ._

“oa

(M — D) x

Q

* Problem: Infinitely many transitions
(Because every transition is a “concrete” data-flow)

* Solution: Model sets of concrete data-flows symbolically

[u)w/] N {{'m»u(m) | meDom(p) FUAU{m® i/ (m) | meDom(p/)}

|:,u,)\,,u/ :| N |:{°m>—>u(m) | meDom(p) PUAU{m®—p'(m) | meDom(p')} :|

Running example, D = {0}:

{x— 0}, {C— 0}, {x = nil}

{x—nil}, {A—0},{x ﬂ)

{x — nil},{B+— 0}, {x — 0}

A

~Y
{*x+— 0,6~ 0,x*+—nil}

{*x = nil, A —0,x*+ 0}

s

{*x — nil;B+—0,x* — 0}

Henceforth:

e X=PU{*m|me M}U{m®|m e M} denotes the set of
data variables

* X — D denotes the set of data assignments
(ranged over by o)

* Observation: Every data assignment models a data-flow
(“Model sets of concrete data-flows symbolically”)

* Observation: Every data assignment models a data-flow
(“Model sets of concrete data-flows symbolically”)

* To do: Symbolically represent sets of data assignments
* Approach: Define a logic whose semantics is defined in
terms of data assignments

¢ Formulas: £
e Entailment: = C (X —=D) x L

Observation: Every data assignment models a data-flow
(“Model sets of concrete data-flows symbolically”)

To do: Symbolically represent sets of data assignments
Approach: Define a logic whose semantics is defined in
terms of data assignments

¢ Formulas: £
e Entailment: = C (X —=D) x L

P’—@>~{1>\P:Dom(a)ﬁ]P’ and o = ¢}

* Pis called a synchronization constraint
¢ (is called a data constraint

Syntax:

a == T|L]|x=x]|Keep(M) (dataatoms)

¢ == al-a (data literals)

o = L|leN@|eVe]|Ixe (dataconstraints)
Semantics:

g): X1 = X2 iff O’(X]) = O’(Xz)

o |=Keep(M) iff oFE°*m=m® forall me M

Henceforth:

¢ DC denotes the set of data constraints
e L :=DC

Attempt 3: A protocol is a tuple (Q, P, M, —. qo, o),
where — C Q x 2P x DC x Q

Attempt 3: A protocol is a tuple (Q, P, M, —. qo, o),
where — C Q x 2P x DC x Q

Running example, D = {0}:

ima=0

{B},B=x

Attempt 3: A protocol is a tuple (Q, P, M, —. qo, o),
where — C Q x 2P x DC x Q

Running example, D = {0, 1}:

ima=0

{B},B=x

Attempt 3: A protocol is a tuple (Q, P, M, —. qo, o),
where — C Q x 2P x DC x Q

Running example, D = {0,1,2,...}:

ima=0

{B},B=x

Finally: A protocol is a tuple (Q, (P, POUt) M, —, qo, ko),
where — C Q x 2P xDC x Q

Running example, D = {0,1,2,...}:

{ich*x=C
{A;},A=x'%)
B=x*

{B; };

About directions:
* An output port to a process is an input port to the protocol

* An input port to a process is an output port to the protocol

Running example:

Alice

put (d)
A O _ q
fichex=C
{a;},4=x°"
o {Bi}B=x*

But...

{;c},

(Vg AN

{B;c},

B=y*A°®x=C

{4,B; },

A=x*AB=y*

{a;c},
A=x*AN°y=0C)
RN T N L e

/\B y® ‘y=¢C *x=cC AA=x®

Running example”: Async., reliab., unord., transaet:, consid.

Geh o {ieh
SN

For k producers, 2 states and O(k - 2) transitions per state

Compositional construction, through multiplication

Compositional construction, through multiplication

{riiptpi=p2

-4

Sync(p1; p2)

Compositional construction, through multiplication

{riiptpi=p2
” iz {pl;},T
{riiptip=p2

Sync(p1; p2) LossySync(p1; p2)

Compositional construction, through multiplication

{ri;phsm=p2

2 Gy}, *m=p
{O) % —-O—_ —=0

{P1;P2}7P1 =p2 {p1§}7p1 =m®

Sync(p1;p2) LossySync(p1; p2) Fifo(m)(p1; p2)

Compositional construction, through multiplication

{ri;phsm=p2

2 Gy}, *m=p
% —-O—_ —=0

{P1;P2}7P1 =p2 {p1§}7p1 =m®

Sync(p1;p2) LossySync(p1; p2) Fifo(m)(p1; p2)

1P} T

-4

Drain(p1, p2;)

Compositional construction, through multiplication

{riiptpi=p2

Sync(p1; p2)

{p1pi s T

-4

Drain(p1, p2;)

{p: b T

{piip}ip1=p2
LossySync(p1; p2)

{pipstipi=ps

{P2ip3}.p2 =13

Merger(p1, p2; p3)

{ipa}, om =pa

—O— =0

{p1;}7p1 =m®

Fifo(m)(p1; p2)

Compositional construction, through multiplication

{riiptpi=p2

Sync(p1; p2)

{p1pi s T

-4

Drain(p1, p2;)

{p: b T

{piip}ip1=p2
LossySync(p1; p2)

{pipstipi=ps

{P2ip3}.p2 =13

Merger(p1, p2; p3)

Gpah*m=pa
—O— =0

{p1;}7p1 =m®

Fifo(m)(p1; p2)

{pﬁpzapg,}vpl =p2Ap1=p3

!

Replicator(p1; p2, p3)

Running example:

{4;P1},
A=P1

5 g

{B; P2},
B=P2

{P1;P3},

P1=P3

{P2;P3},
P2 =P3

{;c},

{P3 by

P3 =x°®

Running example:

{4;P1}, {P1;P3},
A=P1 P1=P3

{A,B;P1,P2},
A=PiaB=p2 @

{B; P2}, {P2;P3},
B = P2 P2 = P3

Running example:

{A;P3},
JP1.(A=P1 AP1=P3)
{;c},
*x=C
® —>O©O
{P3;},
P3 = x*®

{B; P3},
3P2.(B = P2 A P2 = P3)

Running example:

{;c},*x=C

{A;},3P3.3P1.(A = P1 AP1 =P3 AP3 =x*)

{B;},3P3.3P2.(B = P2 AP2 = P3 A P3 = x°)

Running example:

{§C}’ e
{A; 1A
{B; };B

non

w N

X

Definition:

Q1, Qo, o Qi xQy,

P, P, (P U P\ (Pg™ U PgUY),
P(l)ut’ o Pgut’ _ (P(l)ut U Pgut) \ (Piln U Pizn)’
M1, Mz, Ml U MZ)
—1, —2, —,

an 7 (49, 93)

if Pin 0 Pin = pgut) pgut = ()
and M; NM; =0

where — is the smallest relation induced by the rules on the
next slide

2a§02
- 2 ‘12
g 2%, g and gy 222,

t Pl
— (P UPSU)
and (PI"UPSU) N P, = (

(P] Upz)\(P] ﬂpz),H(P] ﬂPz).ng N2 (q,17 [,],2)

(q17q2)

2a§02
- 2 ‘12
g 2%, g and gy 222,

t Pl
— (P UPSU)
and (PI"UPSU) N P, = (

(P] Upz)\(P] ﬂpz),H(P] ﬂPz).ng N2 (q&? q:lz)
(q17q2)

7 1,_@1) g, and g2 € Q2

and (P UPQU) NPy =0

P11 /\Keep(MZ)
L ke e

(q1,92) (71,92)
1

2a§02
- 2 ‘12
g 2%, g and gy 222,

t Pl
— (P UPSU)
and (PI"UPSU) N P, = (

(P] Upz)\(P] ﬂpz),H(P] ﬂPz).ng N2 (q&? q:lz)
(5]17 ‘12)

7 1,_@1) g, and g2 € Q2

and (P UPQU) NPy =0

P11 /\Keep(MZ)
L ke e

(q1,92) (71,92)
1

2—W> 2q5 and q; € qu)
Zid (Pln PO‘“) NP, =

Py,2A\Keep(My)
il e

(11, 92) (q1,95)
1

Running example:

Alice put (d)

a1 @ay@az R ag

But...

* Observation: Directly/explicitly multiplying automata
requires a significant intellectual effort

* Can we think of more convenient ways of writing
multiplication expressions?

What are suitable
programming constructs
to denote such models?

—
Approach: First semantics , then syntax
—_——
What are suitable

models of protocols?

Summary:

e [nteractions are streams
® Protocols are:

* languages (of streams)
* automata
* multiplication expressions (over automata)

* (How are automata related to languages!?)

One syntax

Approach: Denote multiplication expressions by
(hyper)digraphs

* [vertex] = port

* [(hyper)arc] = automaton over connected [vertices]

A P1
O—>Q,

P3 C
B P2

{py;ip i =m2

% ik T Gpa) tm=pa
*Ci —O—_ —=0

{riipatsp1 =12 {pi; o =m®
n 2 P P2 pP1 m P2
O——>0 O>-rrrrennnn »O 0)—:'—)0
Sync(p1; p2) LossySync(p1; p2) Fifo(m)(p1; p2)

(See demo)

e b T {piipapshpi=p2ApL=ps
” z {piips}.p1 =ps
{Pz;Ps}Jﬂz =p3
P1 P2
P p2 G P3 P
o——© p2>—>o o 3
O
Drain(p1,p2;) Merger(p1, p2; p3) Replicator(p1; p2, ps)

(See demo)

Running example:

A P1
O—>Q,

P3 C
B P2

O—>0

Running example:

Q P3 pmoom p
P2>—>o @ | oo
|:|:B P2:|l Q o

Running example:

{A;P1},
A=P1

4 g

{B;P2},
B=P2

{P1;P3},

P1=P3

{P2;P3},
P2 =P3

Running example:

Running example:

Alice
P1

A O———>0

Carol
P3 X
Q; C

Bob
P2

(See demo)

Running example’:

Alice

P1
A O——>0Q,
Carol
P3 X P4 y
— > }ooc
Bob
P2
B O——>0@

(See demo)

Running example”:

Ao o
\ Carol
P3
C

Alice

(See demo)

Suppose: Merge from three inputs; Replicate to three outputs

AL
Zay

Convenient:

(See demo)

Running example:

A P1
O—>0Q,
B P2

O—>0

P3

“Fat” vertices (i.e., abbreviations of sequences of Mergers
and Replicators) are called nodes

Binary arcs are called channels
(Hyper)digraphs are called circuits
This graphical language is called Reo [Arb]

http://www.open.ou.nl/ssj/prdk

“Fat” vertices (i.e., abbreviations of sequences of Mergers
and Replicators) are called nodes

Binary arcs are called channels
(Hyper)digraphs are called circuits
This graphical language is called Reo [Arb]

Eclipse plugins (editor, animator, compiler) for Reo
development

http://www.open.ou.nl/ssj/prdk

(See demo)

http://www.open.ou.nl/ssj/prdk

Exercises

o . O
o\
| o”Xb e

Exercise 1: Describe the protocol specified by this circuit
(in natural language or as an automaton)

Siad Exercise 2

O
A\b B
e

C

Exercise 2: Describe the protocol specified by this circuit
(in natural language or as an automaton)

Exercise 3: Design a circuit for a protocol among 3 producers
and 3 consumers, where a message sent by a producer is
synchronously received by all consumers

& Exercise 3

Exercise 3: Design a circuit for a protocol among 3 producers
and 3 consumers, where a message sent by a producer is
synchronously received by all consumers

24 Exercise 4
) O—)Q/’O)
B O ,g/’o E

Exercise 4: Describe the protocol specified by this circuit
(in natural language or as an automaton)

24 Exercise 4
) O—)Q/’O)
B O ,g/’o E

Exercise 5: Extend the circuit from Exercise 4 for a protocol
among 3 producers and 3 consumers

2 Exercise 5
) O—)Q/’O)
B O ,g/’o E
) O\)é/{) :

Exercise 5: Extend the circuit from Exercise 4 for a protocol
among 3 producers and 3 consumers

fiad Exercise 6

AO—>Q/O)

}

B

Exercise 6: Describe the protocol specified by this circuit
(in natural language or as an automaton)

fiad Exercise 6

AO—>Q/O)

}

B

Exercise 7: Extend the circuit from Exercise 6 for a protocol
with 2 regulators

tad Exercise 7

AO—>Q/O)

‘

I

Exercise 7: Extend the circuit from Exercise 6 for a protocol
with 2 regulators

Exercise 8: Design a circuit for a protocol among two
producers, where producers send messages only
asynchronously (cf. Drain).

& Exercise 8

Exercise 8: Design a circuit for a protocol among two
producers, where producers send messages only
asynchronously (cf. Drain).

ftad Exercise 9

Exercise 9: Describe the protocol specified by this circuit
(in natural language or as an automaton)

E‘E Exercise 9

Exercise 10: Extend the circuit from Exercise 9 for a protocol
where exactly one consumer synchronously receives the
message sent by the producer (cf. XOR)

E‘E Exercise 10

Exercise 10: Extend the circuit from Exercise 9 for a protocol
where exactly one consumer synchronously receives the
message sent by the producer (cf. XOR)

fi84 Exercise 10

Exercise 11: Extend the circuit from Exercise 10 for a protocol
where at least one consumer synchronously receives the
message sent by the producer (cf. OR)

E‘lﬁ Exercise 11

Exercise 11: Extend the circuit from Exercise 10 for a protocol
where at least one consumer synchronously receives the
message sent by the producer (cf. OR)

Summary:

* (Hyper)digraphs denote multiplication expressions

* Reo circuits are (hyper)digraphs

* Comparison:

GPL (e.g., Java)

DSL (e.g., Reo+automata)

action-based
process as primitive
imperative/functional

interaction-based
protocol as primitive
declarative/relational

Summary:
* (Hyper)digraphs denote multiplication expressions
* Reo circuits are (hyper)digraphs

* Comparison:

GPL (e.g., Java) DSL (e.g., Reo+automata)
action-based interaction-based
process as primitive protocol as primitive

imperative/functional declarative/relational

* Other syntaxes:
e Pr
¢ Petri nets [Sif]
* Connector algebras [Sif]
* UML Sequence/ Activity Diagrams, BPMN, BPEL

How does the compiler work?

Two basic approaches:
* Distributed approach

* Centralized approach

Distributed compilation:

1 Find a “small” automaton for the local behavior of every
node/channel in the input circuit

Distributed compilation:

1 Find a “small” automaton for the local behavior of every
node/channel in the input circuit

2 Translate the resulting small automata into Java code for
their run-time execution, using a consensus algorithm

Running example:

-
Alice {A;P1},
A=P1
)) ¢
{p1;P3},
_,() P1=P3
A
e
Bob **%) (P23},
P2=P3
)]
{B; P2},
B=P2

{P3;},

P3=x*

Carol

Distributed execution:
1 Protocol thread «; awakes to handle event from 6 on port p

o P,
2 For all transitions " —% ¢’ such that p € P

Distributed execution:
1 Protocol thread «; awakes to handle event from 6 on port p

o P,
2 For all transitions " —% ¢’ such that p € P

1 o4 checks synchronization constraint P:
¢ Are “neighboring” process threads “behind” public ports in
P ready for data-flow through those ports?
® Are “neighboring” protocol threads “behind” private ports
in P ready for data-flow through those ports? (New events!)

Distributed execution:
1 Protocol thread «; awakes to handle event from 6 on port p

o P,
2 For all transitions " —% ¢’ such that p € P

1 o4 checks synchronization constraint P:

¢ Are “neighboring” process threads “behind” public ports in
P ready for data-flow through those ports?
® Are “neighboring” protocol threads “behind” private ports
in P ready for data-flow through those ports? (New events!)
2 «; checks data constraint ¢:

* Do data to be exchanged through ports in P satisfy ¢?

Distributed execution:
1 Protocol thread «; awakes to handle event from 6 on port p

o P,
2 For all transitions " —% ¢’ such that p € P

1 o4 checks synchronization constraint P:
¢ Are “neighboring” process threads “behind” public ports in
P ready for data-flow through those ports?
® Are “neighboring” protocol threads “behind” private ports
in P ready for data-flow through those ports? (New events!)
2 «; checks data constraint ¢:
* Do data to be exchanged through ports in P satisfy ¢?

3 «; commits to make transition, and informs 6
4 «; awaits confirmation from 6, and makes transition
5 «; breaks the loop

3 «; goes back to sleep

Centralized compilation:

1 Find a “small” automaton for the local behavior of every
node/channel in the input circuit

Centralized compilation:
1 Find a “small” automaton for the local behavior of every
node/channel in the input circuit
2 Multiply the resulting small automata into a “big”
automaton for the global behavior of the input circuit

Centralized compilation:
1 Find a “small” automaton for the local behavior of every
node/channel in the input circuit
2 Multiply the resulting small automata into a “big”
automaton for the global behavior of the input circuit

3 Translate the resulting big automaton into Java code for its
run-time execution

Running example:

Alice

O

Bob

O

—o

{;Ch*x =
{A; A =x°
{B; }sB=x°

0.

Carol

Centralized execution:
1 Protocol thread o awakes to handle event from process
thread on port p

s P,
2 For all transitions ¢ =% ¢’ such that p € P

Centralized execution:
1 Protocol thread o awakes to handle event from process

thread on port p
e q’ such thatp € P:

2 For all transitions """ —
1 o checks synchronization constraint P:
® Are “neighboring” process threads “behind” public ports in

data-flow through those ports?

P ready for
L4 Are-“neteh CO c D v-‘ S

Centralized execution:
1 Protocol thread o awakes to handle event from process

thread on port p
i q’ such thatp € P:

2 For all transitions """ —
1 o checks synchronization constraint P:
® Are “neighboring” process threads “behind” public ports in

data-flow through those ports?

P ready for
* Are-“neiegh CO a D tvate S

2« checks data constraint :
* Do data to be exchanged through ports in P satisfy ¢?

Centralized execution:
1 Protocol thread o awakes to handle event from process

thread on port p

2 For all transitions g™ Lo, q’ such thatp € P:
1 o checks synchronization constraint P:
® Are “neighboring” process threads “behind” public ports in
P ready for data-flow through those ports?

2« checks data constraint :
* Do data to be exchanged through ports in P satisfy ¢?

3 arcommits-to-make transition,and-informs-
4 o awaits-eonfirmationfrom-f,-and makes transition

5 « breaks the loop
3 « goes back to sleep

Reo circuit

ay, .-, >0
generateCode ;g
a
generateCode o
a ap (x) - (x) an
|]
I 1

(sequential) (parallel)

* The compiler uses (at least) the centralized compilation

* (See demo)

* The compiler uses (at least) the centralized compilation

* (See demo)

* Observation: State space explosion at compile-time
* Two producers: 4 states, 11 transitions
* Four producers: 16 states, 173 transitions
* Eight producers: 256 states, 23801 transitions

The compiler uses (at least) the centralized compilation

(See demo)

Observation: State space explosion at compile-time

* Two producers: 4 states, 11 transitions
* Four producers: 16 states, 173 transitions
* Eight producers: 256 states, 23801 transitions

Observation: Oversequentialization at run-time

Optimizations are necessary

¢ Transformations at the level of automata instead of at the
level of generated code

* Formally: Behavior-preserving functions from automata
(low performance) to automata (higher performance)
Reo L> Auto Autq LI Auty N Java

* I want to discuss two such optimizations

Transformations at the level of automata instead of at the
level of generated code

Formally: Behavior-preserving functions from automata
(low performance) to automata (higher performance)

Reo L> Auto Autq LI Auty N Java

I want to discuss two such optimizations

But!

What is the meaning of “behavior-preserving”?

What is the meaning of “behavior”?

* Remember that, initially, protocols were languages
* Thus, the behavior of an automaton is its accepted
language

e Draw inspiration from classical pushdown automata

* Instantaneous description: (g, w,)
* g € Qis the current state
* w:N — (P — D) is the remaining word (input tape)
* p:M — Dis the current memory snapshot (stack)

* Instantaneous description: (g, w,)

* g € Qis the current state
e w:N— (P — D) is the remaining word (input tape)
* p:M — Dis the current memory snapshot (stack)

* Move: (q,w, ') F (', o', 1)

Instantaneous description: (g, w,)

* g € Qis the current state
e w:N— (P — D) is the remaining word (input tape)
* p:M — Dis the current memory snapshot (stack)

Move: (q,w, ') = (9, w', 1)

Language: {?/U | (q()’ w, /’LO) l_ <q17w/7ﬂl) l_ (QLW//vMZ) l_ T

Language equivalence: ~

(‘71‘7 w, MZ) - (‘71‘+1> w/7 Mi-i—l)

qi P’—% qi+1

lmui-i-l)
(qi,w, i) F (i1, w
qi,w,

qi P’—% qi+1

d Dom(w(0)) =P
an

lmui-i-l)
(qi,w, i) F (i1, w
qi,w,

Pyp
qi — qi+1

and Dom(w(0)) = P
and {*m — p;(m) | me M}
Uw(0) U {m® = pipa(m) [m e M} |=

(‘71‘7 w, MZ) - (‘71‘+1> w/7 Mi-i—l)

i 2 Ji+1
and Dom(y;) = Dom(pit1) = M
and Dom(w(0)) = P
and {*m — p;(m) | me M}
Uw(0) U {m® = pipa(m) [m e M} |=

(‘71‘7 w, MZ) - (‘71‘+1> w/7 Mi-i—l)

i e Ji+1
and Dom(y;) = Dom(uit1) =M
and Dom(w(0)) = P
and {*m — p;(m) | me M}
U(0) U{m® > i1 (m) | m € M} =

(‘71‘7 w, MZ) - (‘71‘+1> w/7 Mi-i—l)

®7
gi =2 i
and Dom(y;) = Dom(pi;1) = M
and {*m > p;(m)|me M}
U{m® = pip1(m) [me M} =

(i, w, 1) = (Gig1, W, prig1)

* Definition: g is behavior-preserving if g(Aut) ~ Aut
* Theorem: a; ~ a; not implies a; ®a~xa, @ a

* =~ is not a congruence for ®

* Witness: Variant of a(b + c) vs. (ab) + (ac)

* Makes reasoning very difficult

* Definition: g is behavior-preserving if g(Aut) ~ Aut
* Theorem: a; ~ a; not implies a; ®a~xa, @ a

* =~ is not a congruence for ®

* Witness: Variant of a(b + c) vs. (ab) + (ac)

* Makes reasoning very difficult

* Define a congruence ~ that subsumes ~, based on
bisimulation [Rut]

(Q17 P7M> —1, q(l)a MO) =R (QZv vaa —2, qga ”0)

RC Q1 xQ, and q(l)ng

(Q17 P7M> —1, q(l)a MO) =R (QZv vaa —2, qga ”0)

RC Q1 xQ, and ¢ R ¢}

P,p1 / _}P,m ’
Mmn—1q implies ¢1 = \/ { ¢ 2 / 212
and and q1 R ¢ and 4] Rgq

for all q1,47,92,P, 1

(Q17 P7M> —1, q(l)a MO) =R (QZv vaa —2, qga ”0)

RC Q1 xQ, and ¢ R ¢}

and

and

P7
g ="
land g1 R g2 |

—

Py .
B2 —24q;

—

land g1 R g2 |

implies 1 = \/ {902
for all q1,47,92,P, 1
implies ¢, = \/ {801

for all q1,92,45,P, ¢2

P7
D~ q)
and 4] R g,

P,
7 iﬂ 71
and q; R q;

(Q17 P7M> —1, q(l)a MO) =R (QZv vaa —2, qga ”0)

e Theorem: ~ C =~
e Theorem:

[a1 >~ a; and a3 ~ ay] implies a; ® a3 ~ a, ® ay

e Theorem: ~ C =~
e Theorem:

[a1 >~ a; and a3 ~ ay] implies a; ® a3 ~ a, ® ay

* Corollary: g is behavior-preserving if g(Aut) ~ Aut

Optimization I

* Observation: Centralized approach suffers from
compile-time state-space explosion and run-time
oversequentialization

* Claim: Distributed approach suffers from run-time
overparallelization

* Observation: Centralized approach suffers from
compile-time state-space explosion and run-time
oversequentialization

* Claim: Distributed approach suffers from run-time
overparallelization

O 2 Q) O

{a;p1}, | {py;P2}, | {P25cC}, A=C

A=P1 P1=P2 P2=C
VS- ()

B =R

* Observation: Centralized approach suffers from
compile-time state-space explosion and run-time
oversequentialization

* Claim: Distributed approach suffers from run-time
overparallelization

P1 P2 C
O L&) L&) O
e 2
{a;C},
{a;p1}, | {py;P2}, | {P25cC}, A=C
A=P1 P1=P2 P2=C
9 9 9 V8. 0 o}
N J

* Goal: Find a middle ground between these approaches

Reo circuit

ar, ..., ayp>0

’

~

::Y

e

::Y

»
oﬂ\J<__

generateCode ;g

(sequential)

(parallel)

Hybrid compilation:
1

N

Partition the resulting set of small automata into subsets

w

For every resulting subset:
* Multiply its small automata into a “medium” automaton
for the regional behavior of a region of the input circuit
4 Translate the resulting medium automata into Java code
for their run-time execution, using a consensus algorithm

Running example:

Alice

Bob

O

O

{a;p3},
A=P3

{B; P3},
B ="P3

{P3;},

P3=x*

Carol

Hybrid execution:
* Similar to distributed execution, except:

* Fewer protocol threads to reach consensus with
* “Cheaper” consensus when partitioning carefully

Reo circuit

ay, .-, >0

Bi,...,Bi<m<n
s D1<m<n generateCode ;g

a bi,...,bm
l x
’ generateCode o ’ generateCodey,,,
1
a by () - () b a; (x) - (x) ay
|]
I 1

(sequential) (parallel)

* The compiler partitions such that consensus is “cheap”
* (See demo)

The compiler partitions such that consensus is “cheap”

(See demo)

Main question: How?

Helper question: What makes consensus in the distributed
approach “expensive”? Propagation of synchrony

(Anecdote)

The compiler partitions such that consensus is “cheap”

(See demo)

Main question: How?

Helper question: What makes consensus in the distributed
approach “expensive”? Propagation of synchrony

(Anecdote)

Definition:
* Expensive consensus supports propagation of synchrony
* Cheap consensus does not

(Continue anecdote)

The compiler partitions such that eonsensus-is“cheap” the

resulting medium automata require no propag. of sync.

(See demo)

Main question: How?

Helper question: What makes consensus in the distributed
approach “expensive”? Propagation of synchrony

(Anecdote)

Definition:
* Expensive consensus supports propagation of synchrony
* Cheap consensus does not

(Continue anecdote)

* An automaton with transition relation — requires
propagation of synchrony iff:

q LN g and |P| > 1] forsome q,q4',P, ¢

(Le., it has a transition to synchronize two or more ports)

* An automaton with transition relation — requires
propagation of synchrony iff:
g D¢, ¢ and |P| > 1] forsome q,q',P,¢

(Le., it has a transition to synchronize two or more ports)

* Let R denote an auxiliary relation such that a R a iff:

* g and a’ require propagation of synchrony
* aand a’ share at least one port (“neighbors”)

* (R is symmetric)

An automaton with transition relation — requires
propagation of synchrony iff:
g D¢, ¢ and |P| > 1] forsome q,q',P,¢

(Le., it has a transition to synchronize two or more ports)

Let R denote an auxiliary relation such that a R a’ iff:

* g and a’ require propagation of synchrony
* aand a’ share at least one port (“neighbors”)

(R is symmetric)

Partition criterion: a,a’ are in the same partif a R a’
Partition definition: {{a'|aR*a'} |ac{a,...,a,}}

Running example:

Alice

Bob

{B; P2},
B=P2

{P1;P3},

P1=P3

{p2;p3),

P2=P3

{P3;},

P3=x*

Carol

* What if we use the distributed approach with cheap
consensus? Unsound circuit execution

* How to prove the hybrid approach sound?

* What if we use the distributed approach with cheap
consensus? Unsound circuit execution

* How to prove the hybrid approach sound?

e Observation:

* Expensive consensus computes ® at run-time
* Equivalently: ® models expensive consensus

What if we use the distributed approach with cheap
consensus? Unsound circuit execution

How to prove the hybrid approach sound?

Observation:

* Expensive consensus computes ® at run-time
* Equivalently: ® models expensive consensus

Proof steps:

1 Define another multiplication ® to model cheap consensus
2 Establish that substituting © for ® is behavior-preserving

(Key: model consensus algorithms with multiplications)

Transition rule for ®:

17501 2)@2
q1 ——1 ‘11 and o —=» q2

and (P UP9") N P, = (P U PS™t) N P

P1AP2,3(P1NP2).01A92 q,

Transition rule for ®:

17501 2)@2
m ——14q; and g2 —=2 q;

and (Pm U Pout) NPy, = (Pm U Pgut) NP
P1 APy, 3(P1NP).01 A2 q

Transition rule for ©:

1’@1 27902
1 ——14; and g2 —"=2 g

and [P1NP,=0 or Py CP, or P, C P4]

P1AP2,3(P1NP2).01Ap2 q,

e Theorem:
[Plﬂpz =@ or P CP; or P, gPﬂ
implies (PI" U PS") NP, = (P U PS) N Py

* Expensive consensus can safely be used instead of cheap
consensus

* Supporting propagation of synchrony is more powerful
than not supporting propagation of synchrony

* Theorem:
a1 or a, requires no propagation of synchrony
and (PPUP™) NP, = (PR UPS™) NP,

implies [Pl NPy=(or Py CP, or P, C Pl]

* Theorem:
a1 or a, requires no propagation of synchrony
and (PPUP™) NP, = (PR UPS™) NP,

implies [Pl NPy=(or Py CP, or P, C Pl]

* Corollary:

[a1 or a, requires no propagation of synchrony|
implies a1 ® ay ~ a1 © ay

* Theorem:
a1 or a, requires no propagation of synchrony
and (PPUP™) NP, = (PR UPS™) NP,

implies [Pl NPy=(or Py CP, or P, C Pl]

* Corollary:

[a1 or a, requires no propagation of synchrony|
implies a1 ® ay ~ a1 © ay

* Corollary:
{a1,...,a,} are small automata
and {Bi,...,B,} is a partition

a1®"'®an2(®Bl)®"'®(®Bm)

implies

* Previous observations:
* Centralized approach suffers from compile-time
state-space explosion and run-time oversequentialization
¢ Distributed approach suffers from run-time
overparallelization
e Simulating automata that require propagation of
synchrony generally amounts to useless parallelism

* The hybrid approach tries to maximize useful parallelism

Optimization II

Centralized execution:

1 Protocol thread o awakes to handle event from process
thread on port p

2 For all transitions g™ —— D, q' such thatp € P:
1 o checks synchronization constraint P:

® Are “neighboring” process threads “behind” public ports in
P ready for data ﬂow through those ports7

2« checks data constraint ¢:

* Do data to be exchanged through ports in P satisfy ¢?
3 @ .] stion-andinf)
4 o awaits-confirmationfrom#-and makes transition
5 « breaks the loop

3 « goes back to sleep

* Constraint solving for ¢, with free variables x1, ..., xx:

1 “Guess” asolution o = {x1 — d1,...,xx — di}
2 Checko ¢
On failure, go back to the previous step and guess again

* Constraint solving for ¢, with free variables x1, ..., xx:

1 “Guess” asolution o = {x1 — d1,...,xx — di}
2 Checko ¢
On failure, go back to the previous step and guess again

* Fortunately: Much more advanced techniques exist

* Unfortunately: Constraint solving over finite domains is
NP-complete

Constraint solving for ¢, with free variables x1, ..., x:

1 “Guess” asolution o = {x1 — d1,...,xx — di}
2 Checko ¢
On failure, go back to the previous step and guess again

Fortunately: Much more advanced techniques exist

Unfortunately: Constraint solving over finite domains is
NP-complete

Checking data constraints, for every transition, for every
event, is an expensive sequential bottleneck

Challenge: How to speed-up checking data constraints?

What a programmer would do:

{A;B}7A=B q/

What a programmer would do:

{A;B}7A=B q/

B:=A

What a programmer would do:

{A;B,C},A=BAA=C y

What a programmer would do:

{A;B,C},A=BAA=C y

What a programmer would do:

{A,B;C},A=BAA=C y

What a programmer would do:

{A,B;C},A=BAA=C y

U
if A=BthenC:=A

Idea:

* At compile-time: Translate every declarative data constraint
¢ into an imperative data command () (cf. programmers)

* Atrun-time: Execute f(y) instead of solving ¢

* (See demo)

Syntax of data commands

P = skip|x:=t|ifp->P|P;P

Semantics of data commands

* A configuration (P, 0) is a pair of a data command P and a
state o to execute P in

Semantics of data commands

* A configuration (P, 0) is a pair of a data command P and a
state o to execute P in

* —> denotes the transition relation on configurations

(skip,0) = (e,0) (x :=t,0) = (g, 0[x := eval,(t)])

oEp o e

(if ¢ ->P,0) = (P, 0) (if ¢ -> P,0) = (e, fail)

(P,o) = (P',0")
(P; P o)== (P';P"o)

Semantics of data commands
e Partial correctness semantics
M(P,X)={c"|ce€X and (P,0) =" (¢,0')}

Semantics of data commands
e Partial correctness semantics
M(P,X)={c"|ce€X and (P,0) =" (¢,0')}

¢ Total correctness semantics
Mtot(P7 E) = M(Pa Z)
U{fail|c € ¥ and (P,0) =* (e, fail)}

Find a translation { such that, for every data constraint ¢:

Find a translation { such that, for every data constraint ¢:

M(1(p), %) C{o |0 E ¢}

soundness

where X =X —D

Find a translation { such that, for every data constraint ¢:

M(i(p),X) C{o|o = ¢} and M(f(p),) € X

soundness completeness

where X =X —D

Syntax of data constraints’:

tou= x|d|f(t... 1) (data terms)

a == T|L|t=t|Keep(M)|R(t,...,t) (dataatoms)

¢ == al|-a (data literals)

o == LloNp|lpVe|Ixe (data constraints)

Semantics of data constraints’:

g): =0t iff evalg(tl) = evalg(xz)
o = Keep(M) iff opFE°*m=m® forall me M
o= R(t,...,t) iff (evaly(f1),...,eval,(t)) € R

where eval : (X — D) x {f|tis adataterm} — D

* Theorem: Every automaton can be translated to a
congruent automaton with only data constraints of the
form 41 A -« A by

e Henceforth, assume all data constraints to be in this form

Question: How to construct P that computes ¢ that satisfies ¢?

Observations:

* Some literals in of the form x = (or t = x) can be turned
into an assignment statement:

x:=t

* Other literals ¢ in ¢ need to be translated into a
guarded failure statement:

if ¢ -> skip

* The order in which assignments and guarded failures
follow each other crucially matters

v 1(C=add(A,B) A —0dd(C)) = C :=add(A,B) ;
if —0dd(C) -> skip

X 1(C=add(A,B) A —0dd(C)) = if —0dd(C) -> skip ;
C :=add(A,B)

Approach:

1 Extract a linear precedence relation C on literals in ¢ from
a data-flow graph for ¢

2 Translate literals to statements according to C

Explanation by example:

¢ =A=0AB=1AC=add(A,B)AC=DAC=EA-0dd(D)

—0dd(D)

All literals in ¢ are vertices

—0dd(D)

Also “symmetric equalities” are vertices

—0dd(D)

Also % is a vertex

—0dd(D)

Hyperarcs represent dependencies among literals

—0dd(D)

A=0 C=D D=C
*/ C = add(A,B)
\B=1 C=E E=C

Hyperarcs represent dependencies among literals

—0dd(D)

C=D—_ = D=¢C

A=0
*/ }C—add(A,B)
\B=1

Hyperarcs represent dependencies among literals

C=EZ_ T E=C

~0dd(D)

Hyperarcs represent dependencies among literals

C=EZ__ T E=C

~0dd(D)

C=EZ__ T E=C

(Many hyperarcs missing from this figure)

A=0 c=D¥_——p-c
*/ C = add(A, B)
\)B=1 ccE¥ —SE-c

Compute an arborescence on the hypergraph

A=0 c=D¥_——p-c
*/ C = add(A, B)
\)B=1 ccE¥ —SE-c

(An arborescence not always exists...)

A=0

CB=1

C C = add(A,B)
CD=C
CC=D

C —0dd(D)
CE=C
CC=E

The arborescence induces a strict total order

A=0 A:=0;
CB=1

C C=add(A,B)

CD=C

C—C=D

IZ—Odd(D)

CE=C

CC=E

A simple algorithm iterates over this order

A=0 A:=0;
CB=1 B:=1;
C C=add(A,B)

CD=C

C—C=D

C —0dd(D)

CE=C

CC=E

A simple algorithm iterates over this order

A=0 A:=0;
CB=1 B:=1;

C C=add(A,B) C :=add(A,B) ;
CD=C

CC=D

C —0dd(D)

CE=C

CC=E

A simple algorithm iterates over this order

A=0

CB=1

C C = add(A,B)
CD=C
CC=D

C —0dd(D)
CE=C
CC=E

o QW=
”

A simple algorithm iterates over this order

A=0

CB=1

C C=add(A,B)
CD=C
CC=D if C=D ->skip;
C —0dd(D)

CE=C

CC=E

o QW=
”

A simple algorithm iterates over this order

A=0

CB=1

C C=add(A,B)
CD=C
CC=D if C=D ->skip;
C —0dd(D) if —0dd(D) -> skip ;
CE=C

CC=E

o QW=
”

A simple algorithm iterates over this order

A=0 A:=0;

CB=1 B:=1;

C C=add(A,B) C :=add(A,B) ;
CDh=C D:=C;

CC=D if C=D ->skip;
C —0dd(D) if —0dd(D) -> skip ;
CE=C E:=C;

CC=E

A simple algorithm iterates over this order

A=0 A:=0;

CB=1 B:=1;

C C=add(A,B) C :=add(A,B) ;
CD=C D:=C;

CC=D if C=D ->skip;
C —0dd(D) if —0dd(D) -> skip ;
CE=C E:=C;

CC=E if C=E -> skip;

A simple algorithm iterates over this order

Find a translation { such that, for every data constraint ¢:

M(i(p),X) C{o|o = ¢} and Mi(f(p),X) € X

soundness completeness

where ¥ = X — D.

* Proof using Hoare logic

* Theorem: If the hypergraph for a satisfiable data
constraint ¢ has an arborescence, the algorithm yields a
data command P such that:

Fpart { T} P {¢} and kot {T} P{T}
— —_—

soundness completeness

where Fpart and o are proof systems for partial and total
correctness.

* Theorem: Replacing a data constraint with an equivalent
data constraint yields a congruent automaton

e Corollary: a ~ (a) (where (-)) denotes commandification)

Constraint solving folklore according to Apt:

“If domain specific methods are available they should be
applied instead of the general methods”

More exercises

siad Exercise 12

Q

A C

Exercise 12: Describe the protocol specified by this circuit
(in natural language or as an automaton)

siad Exercise 12

Q

A C

Exercise 13: Extend the circuit from Exercise 12 for a protocol
among 3 producers

siad Exercise 13

Exercise 13: Extend the circuit from Exercise 12 for a protocol
among 3 producers

siad Exercise 13

0
CQ

C

; @x

c >0

Exercise 13: Extend the circuit from Exercise 12 for a protocol
among 3 producers

Exercise 14: Design a circuit for a protocol among 3 producers
that send messages in sequence (all messages are lost)

siad Exercise 14

Exercise 14: Design a circuit for a protocol among 3 producers
that send messages in sequence (all messages are lost)

Exercise 15: Design a circuit for a protocol among 2 producers
that send messages in sequence, where the first producer sends
two messages (all messages are lost)

E% Exercise 15

B O C
\!
i o &

Exercise 15: Design a circuit for a protocol among 2 producers
that send messages in sequence, where the first producer sends
two messages (all messages are lost)

;@ Exercise 15

B O C
—:IY\—>Q
) é

Exercise 16: Extend the circuit from Exercise 15 such that a
consumer receives all messages

3@ Exercise 16
O Q—
A O//Bz
IE\»Q
O é

Exercise 16: Extend the circuit from Exercise 15 such that a
consumer receives all messages

;@ Exercise 17
I
o o

Exercise 17: Describe the protocol specified by this circuit
(in natural language or as an automaton)

Exercise 18: Design a circuit for a protocol among a producer, a
consumer, and a regulator, where the producer sends messages
to the consumer until the regulator sends a signal

E% Exercise 18

Exercise 18: Design a circuit for a protocol among a producer, a
consumer, and a regulator, where the producer sends messages
to the consumer until the regulator sends a signal

siad Exercise 19

Exercise 19: Describe the protocol specified by this circuit
(in natural language or as an automaton)

;@ Exercise 19

Exercise 20: Extend the circuit from Exercise 19 to a lock

;@ Exercise 20

A AN

Exercise 20: Extend the circuit from Exercise 19 to a lock

Summary:
* Basic compilation: Distributed approach and
centralized approach
* Optimizations:
* Hybrid approach (middle ground between sequentiality and

parallelism)
* Translating data constraints to data commands

More optimizations exist! (E.g., automatic queue inference)

 Correctness criteria: preservation of behavior (language
equivalence through congruence)

Are we happy with LossySync?

(Maybe not..!)

* LossySync loses data nondeterministically

* It makes more sense for LossySync to lose data only if they
have nowhere to go

LossySync loses data nondeterministically

It makes more sense for LossySync to lose data only if they
have nowhere to go

LossySync should exhibit context-sensitivity

Generally, context-sensitivity means that behavior depends
on whether the “context” is ready to accept/offer data

P, P,
7 —1 9 and g, — g, .
and (PPUP™) NP, = (PR UPS™) NP,
(P1UP)\(P1N1P,) q

P P
g1 —14; and g2 € Qo G2 =245 and g1 € Q
and (P U Pout) AP =0 and (P"U Pout) AP, =0

(q1.02) 25 (q2) (q1.02) 22 (q1,95)

Question: Redefine the LossySync automaton to make it
context-sensitive (i.e., redefine such that the product of
LossySync and Fifo yields an automaton without (qo, {A; }, T, q0))

Question: Redefine the LossySync automaton to make it
context-sensitive (i.e., redefine such that the product of
LossySync and Fifo yields an automaton without (qo, {A; }, T, q0))

Answer: There is none

* The automata considered so far are insufficiently
expressive

* To elegantly support context-sensitivity, more information
need to be captured

* The automata considered so far are insufficiently
expressive

* To elegantly support context-sensitivity, more information
need to be captured

* Extend transitions from g —> g tog ﬂ> q
* P~ is the unreadiness constraint: P~ contains those ports
that are unready to participate in the transition
* Pis the synchronization constraint
* s the data constraint

suchthatP~ NP =10

Py Py Py Py
I — gy and g 5 7

and (PPUPSU) NPy = (PRUPS™) NPy
and (Pi» U PS™) N P, = (P U P9ty N P,
(P1 UPz)\(P1 mPz)’(PIUPZ)\(PlﬁPZ)

/

Py P P

71]—1}1 7, and g2 € Q; G2 =245 and g1 € Q1
and (PP UPSM)NP; =0 and (PMUPSY NPy =0
and (PRUPS") NPy =0 and (PI"UPS") NP, =)

P1_7P1

Py P,
(f]la[h) —

(91, 92) (91,92) —— (01, 95)

{;Ph {8}
ﬂC% (PHO ®
0, {a;P}

1

{Ph s}
ﬂC%{P}w ®
0, {A;P}

0,{4;}

0, {a;}

Summary:

Context-sensitivity seems a desirable semantic feature to
support

Automata with unreadiness constraints are just one
possible model that supports context-sensitivity
Many others exist:

* 3-coloring semantics
¢ Intentional automata
¢ Guarded automata

e Action constraint automata
[]

Context-sensitivity is, and has been, an important topic in
the Reo community

Final slides

Other topics:
¢ Other semantic models for Reo

* Verification and analysis (model checking, quantitative
analysis, QoS reasoning)
* Other applications:
* Web service composition
* Business process modeling
* Multi-agent systems
* Biological systems

Thank you!

